Suppr超能文献

机器学习分析自动测量视频透视吞咽研究中咽吞咽反射的反应时间。

Machine learning analysis to automatically measure response time of pharyngeal swallowing reflex in videofluoroscopic swallowing study.

机构信息

Artificial Intelligence Application Research Section, Electronics and Telecommunications Research Institute (ETRI), Daegu, Republic of Korea.

Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, 807 Hoguk-ro, Buk-gu, Daegu, 41404, Republic of Korea.

出版信息

Sci Rep. 2020 Sep 7;10(1):14735. doi: 10.1038/s41598-020-71713-4.

Abstract

To evaluate clinical features and determine rehabilitation strategies of dysphagia, it is crucial to measure the exact response time of the pharyngeal swallowing reflex in a videofluoroscopic swallowing study (VFSS). However, measuring the response time of the pharyngeal swallowing reflex is labor-intensive and particularly for inexperienced clinicians, it can be difficult to measure the brief instance of the pharyngeal swallowing reflex by VFSS. To accurately measure the response time of the swallowing reflex, we present a novel framework, able to detect quick events. In this study, we evaluated the usefulness of machine learning analysis of a VFSS video for automatic measurement of the response time of a swallowing reflex in a pharyngeal phase. In total, 207 pharyngeal swallowing event clips, extracted from raw VFSS videos, were annotated at the starting point and end point of the pharyngeal swallowing reflex by expert clinicians as ground-truth. To evaluate the performance and generalization ability of our model, fivefold cross-validation was performed. The average success rates of detection of the class "during the swallowing reflex" for the training and validation datasets were 98.2% and 97.5%, respectively. The average difference between the predicted detection and the ground-truth at the starting point and end point of the swallowing reflex was 0.210 and 0.056 s, respectively. Therefore, the response times during pharyngeal swallowing reflex are automatically detected by our novel framework. This framework can be a clinically useful tool for estimating the absence or delayed response time of the swallowing reflex in patients with dysphagia and improving poor inter-rater reliability of evaluation of response time of pharyngeal swallowing reflex between expert and unskilled clinicians.

摘要

为了评估吞咽困难的临床特征并确定康复策略,在视频透视吞咽研究(VFSS)中测量咽吞咽反射的确切反应时间至关重要。然而,测量咽吞咽反射的反应时间是劳动密集型的,特别是对于没有经验的临床医生来说,通过 VFSS 测量咽吞咽反射的短暂瞬间可能很困难。为了准确测量吞咽反射的反应时间,我们提出了一种新的框架,能够检测快速事件。在这项研究中,我们评估了使用机器学习分析 VFSS 视频自动测量咽期吞咽反射反应时间的有用性。总共从原始 VFSS 视频中提取了 207 个咽吞咽事件剪辑,由专家临床医生对咽吞咽反射的起点和终点进行注释,作为ground-truth。为了评估我们模型的性能和泛化能力,进行了五重交叉验证。训练数据集和验证数据集的“吞咽反射期间”类别的平均检测成功率分别为 98.2%和 97.5%。预测检测与吞咽反射起点和终点的ground-truth 之间的平均差异分别为 0.210 和 0.056s。因此,我们的新框架可以自动检测咽吞咽反射期间的反应时间。该框架可以成为一种临床有用的工具,用于估计吞咽困难患者吞咽反射缺失或反应时间延迟,并提高专家和非熟练临床医生评估咽吞咽反射反应时间之间的差误率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02de/7477563/ec6d231bcff2/41598_2020_71713_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验