Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
ACS Infect Dis. 2020 Oct 9;6(10):2709-2718. doi: 10.1021/acsinfecdis.0c00340. Epub 2020 Sep 18.
The growing challenge of microbial resistance emphasizes the importance of new antibiotics or reviving strategies for the use of old ones. Macrolide antibiotics are potent bacterial protein synthesis inhibitors with a formidable capacity to treat life-threatening bacterial infections; however, acquired and intrinsic resistance limits their clinical application. In the work presented here, we reveal that bicarbonate is a potent enhancer of the activity of macrolide antibiotics that overcomes both acquired and intrinsic resistance mechanisms. With a focus on azithromycin, a highly prescribed macrolide antibiotic, and using clinically relevant pathogens, we show that physiological concentrations of bicarbonate overcome drug resistance by increasing the intracellular concentration of azithromycin. We demonstrate the potential of bicarbonate as a formulation additive for topical use of azithromycin in treating a murine wound infection caused by . Further, using a systemic murine model of methicillin-resistant (MRSA) infection, we demonstrate the potential role of physiological bicarbonate, naturally abundant in the host, to enhance the activity of azithromycin against macrolide-resistant MRSA. In all, our findings suggest that macrolide resistance, observed in the clinical microbiology laboratory using standard culturing techniques, is a poor predictor of efficacy in the clinic and that observed resistance should not necessarily hamper the use of macrolides. Whether as a formulation additive for topical use or as a natural component of host tissues, bicarbonate is a powerful potentiator of macrolides with the capacity to overcome drug resistance in life-threatening bacterial infections.
微生物耐药性的日益严重凸显了开发新型抗生素或重新利用旧抗生素策略的重要性。大环内酯类抗生素是强效的细菌蛋白合成抑制剂,具有治疗危及生命的细菌感染的强大能力;然而,获得性和固有耐药性限制了其临床应用。在本工作中,我们揭示了碳酸氢盐是大环内酯类抗生素活性的有效增强剂,可克服获得性和固有耐药机制。我们以高处方大环内酯类抗生素阿奇霉素为重点,使用具有临床相关性的病原体,表明生理浓度的碳酸氢盐通过增加阿奇霉素的细胞内浓度来克服耐药性。我们证明了碳酸氢盐作为阿奇霉素局部应用的制剂添加剂在治疗 引起的小鼠伤口感染方面的潜力。此外,我们使用耐甲氧西林金黄色葡萄球菌 (MRSA) 感染的系统性小鼠模型,证明了生理碳酸氢盐作为宿主中天然存在的物质,增强阿奇霉素对大环内酯类耐药 MRSA 的活性的潜在作用。总之,我们的研究结果表明,临床微生物学实验室使用标准培养技术观察到的大环内酯类耐药性是临床疗效的不良预测指标,观察到的耐药性不一定会阻碍大环内酯类药物的使用。碳酸氢盐无论是作为局部应用的制剂添加剂还是作为宿主组织的天然成分,都是一种强大的大环内酯类药物增效剂,具有克服危及生命的细菌感染中药物耐药性的能力。