Suppr超能文献

线粒体丙酮酸载体缺乏症的代谢特征及后果

Metabolic Characterization and Consequences of Mitochondrial Pyruvate Carrier Deficiency in .

作者信息

Simard Chloé, Lebel Andréa, Allain Eric Pierre, Touaibia Mohamed, Hebert-Chatelain Etienne, Pichaud Nicolas

机构信息

Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada.

Atlantic Cancer Research Institute (ACRI), Moncton, NB E1C 8X3, Canada.

出版信息

Metabolites. 2020 Sep 6;10(9):363. doi: 10.3390/metabo10090363.

Abstract

In insect, pyruvate is generally the predominant oxidative substrate for mitochondria. This metabolite is transported inside mitochondria via the mitochondrial pyruvate carrier (MPC), but whether and how this transporter controls mitochondrial oxidative capacities in insects is still relatively unknown. Here, we characterize the importance of pyruvate transport as a metabolic control point for mitochondrial substrate oxidation in two genotypes of an insect model, , differently expressing MPC1, an essential protein for the MPC function. We evaluated the kinetics of pyruvate oxidation, mitochondrial oxygen consumption, metabolic profile, activities of metabolic enzymes, and climbing abilities of wild-type (WT) flies and flies harboring a deficiency in MPC1 (MPC1). We hypothesized that MPC1 deficiency would cause a metabolic reprogramming that would favor the oxidation of alternative substrates. Our results show that the MPC1 flies display significantly reduced climbing capacity, pyruvate-induced oxygen consumption, and enzymatic activities of pyruvate kinase, alanine aminotransferase, and citrate synthase. Moreover, increased proline oxidation capacity was detected in MPC1 flies, which was associated with generally lower levels of several metabolites, and particularly those involved in amino acid catabolism such as ornithine, citrulline, and arginosuccinate. This study therefore reveals the flexibility of mitochondrial substrate oxidation allowing Drosophila to maintain cellular homeostasis.

摘要

在昆虫中,丙酮酸通常是线粒体的主要氧化底物。这种代谢物通过线粒体丙酮酸载体(MPC)转运到线粒体内,但这种转运蛋白是否以及如何控制昆虫的线粒体氧化能力仍然相对未知。在这里,我们描述了丙酮酸转运作为昆虫模型两种基因型中线粒体底物氧化的代谢控制点的重要性,这两种基因型不同程度地表达MPC1,一种对MPC功能至关重要的蛋白质。我们评估了野生型(WT)果蝇和缺乏MPC1(MPC1)的果蝇的丙酮酸氧化动力学、线粒体氧消耗、代谢谱、代谢酶活性和攀爬能力。我们假设MPC1缺乏会导致代谢重编程,有利于替代底物的氧化。我们的结果表明,MPC1果蝇的攀爬能力、丙酮酸诱导的氧消耗以及丙酮酸激酶、丙氨酸转氨酶和柠檬酸合酶的酶活性显著降低。此外,在MPC1果蝇中检测到脯氨酸氧化能力增加,这与几种代谢物的总体水平较低有关,特别是那些参与氨基酸分解代谢的代谢物,如鸟氨酸、瓜氨酸和精氨琥珀酸。因此,这项研究揭示了线粒体底物氧化的灵活性,使果蝇能够维持细胞内稳态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bd8/7570025/343601afa7c5/metabolites-10-00363-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验