Suppr超能文献

线粒体丙酮酸载体在蔗糖饮食所致代谢灵活性障碍发生中的作用

Role of the Mitochondrial Pyruvate Carrier in the Occurrence of Metabolic Inflexibility in Exposed to Dietary Sucrose.

作者信息

Simard Chloé J, Touaibia Mohamed, Allain Eric Pierre, Hebert-Chatelain Etienne, Pichaud Nicolas

机构信息

Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada.

Atlantic Cancer Research Institute (ACRI), Moncton, NB E1C 8x3, Canada.

出版信息

Metabolites. 2020 Oct 14;10(10):411. doi: 10.3390/metabo10100411.

Abstract

Excess dietary carbohydrates are linked to dysregulation of metabolic pathways converging to mitochondria and metabolic inflexibility. Here, we determined the role of the mitochondrial pyruvate carrier (MPC) in the occurrence of this metabolic inflexibility in wild-type (WT) and MPC1-deficient (MPC1) flies that were exposed to diets with different sucrose concentrations for 15-25 days (Standard Diet: SD, Medium-Sucrose Diet: MSD, and High-Sucrose Diet: HSD). Our results showed that MPC1 flies had lower mitochondrial respiration rates than WT flies on the SD and MSD. However, when exposed to the HSD, WT flies displayed decreased mitochondrial respiration rates compared to MPC1 flies. WT flies exposed to the HSD also displayed increased proline contribution and slightly decreased expression. Surprisingly, when fed the MSD and the HSD, few metabolites were altered in WT flies whereas MPC1 flies display significant accumulation of glycogen, glucose, fructose, lactate, and glycerol. Overall, this suggests that metabolic inflexibility starts to occur in WT flies after 15-25 days of exposure to the HSD whereas the MPC1 flies display metabolic inflexibility independently of the diet provided. This study thus highlights the involvement of MPC as an essential protein in Drosophila to maintain proper metabolic homeostasis during changes in dietary resources.

摘要

过量的膳食碳水化合物与汇聚到线粒体的代谢途径失调和代谢灵活性受损有关。在此,我们确定了线粒体丙酮酸载体(MPC)在野生型(WT)和MPC1缺陷型(MPC1)果蝇发生这种代谢灵活性受损过程中的作用,这些果蝇被喂食不同蔗糖浓度的饲料15 - 25天(标准饲料:SD,中蔗糖饲料:MSD,高蔗糖饲料:HSD)。我们的结果表明,在SD和MSD上,MPC1果蝇的线粒体呼吸速率低于WT果蝇。然而……[原文此处表述不完整],与MPC1果蝇相比,WT果蝇的线粒体呼吸速率降低。暴露于HSD的WT果蝇还表现出脯氨酸贡献增加和[原文此处表述不完整]表达略有降低。令人惊讶的是,当喂食MSD和HSD时,WT果蝇中几乎没有代谢物发生改变,而MPC1果蝇则表现出糖原、葡萄糖、果糖……[原文此处表述不完整]、乳酸和甘油的显著积累。总体而言,这表明WT果蝇在暴露于HSD 15 - 25天后开始出现代谢灵活性受损,而MPC1果蝇则独立于所提供的饮食表现出代谢灵活性受损。因此,这项研究突出了MPC作为果蝇中一种必需蛋白质在饮食资源变化期间维持适当代谢稳态中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f0/7602203/baa4b9455fec/metabolites-10-00411-g001.jpg

相似文献

2
Metabolic Characterization and Consequences of Mitochondrial Pyruvate Carrier Deficiency in .
Metabolites. 2020 Sep 6;10(9):363. doi: 10.3390/metabo10090363.
3
Identification and characterization of novel MPC1 gene variants causing mitochondrial pyruvate carrier deficiency.
J Inherit Metab Dis. 2022 Mar;45(2):264-277. doi: 10.1002/jimd.12462. Epub 2022 Jan 8.
4
Systemic and mitochondrial effects of metabolic inflexibility induced by high fat diet in Drosophila melanogaster.
Insect Biochem Mol Biol. 2021 Jun;133:103556. doi: 10.1016/j.ibmb.2021.103556. Epub 2021 Feb 21.
5
Sex-dependent adipose glucose partitioning by the mitochondrial pyruvate carrier.
bioRxiv. 2024 May 14:2024.05.11.593540. doi: 10.1101/2024.05.11.593540.
6
MPC1-like Is a Placental Mammal-specific Mitochondrial Pyruvate Carrier Subunit Expressed in Postmeiotic Male Germ Cells.
J Biol Chem. 2016 Aug 5;291(32):16448-61. doi: 10.1074/jbc.M116.733840. Epub 2016 Jun 17.
7
Structural Insights into the Human Mitochondrial Pyruvate Carrier Complexes.
J Chem Inf Model. 2021 Nov 22;61(11):5614-5625. doi: 10.1021/acs.jcim.1c00879. Epub 2021 Oct 19.
8
Requirement for the Mitochondrial Pyruvate Carrier in Mammalian Development Revealed by a Hypomorphic Allelic Series.
Mol Cell Biol. 2016 Jul 14;36(15):2089-104. doi: 10.1128/MCB.00166-16. Print 2016 Aug 1.
9
MPC1 is essential for PGC-1α-induced mitochondrial respiration and biogenesis.
Biochem J. 2018 May 18;475(10):1687-1699. doi: 10.1042/BCJ20170967.
10
Dynamic mitochondrial responses to a high-fat diet in Drosophila melanogaster.
Sci Rep. 2019 Mar 14;9(1):4531. doi: 10.1038/s41598-018-36060-5.

引用本文的文献

1
Phenotyping of -A Nutritional Perspective.
Biomolecules. 2022 Jan 27;12(2):221. doi: 10.3390/biom12020221.

本文引用的文献

1
Metabolic Characterization and Consequences of Mitochondrial Pyruvate Carrier Deficiency in .
Metabolites. 2020 Sep 6;10(9):363. doi: 10.3390/metabo10090363.
2
Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis.
Curr Protoc Bioinformatics. 2019 Dec;68(1):e86. doi: 10.1002/cpbi.86.
3
Mitochondrial (Dys)function and Insulin Resistance: From Pathophysiological Molecular Mechanisms to the Impact of Diet.
Front Physiol. 2019 May 3;10:532. doi: 10.3389/fphys.2019.00532. eCollection 2019.
4
Similar effects of high-fructose and high-glucose feeding in a Drosophila model of obesity and diabetes.
PLoS One. 2019 May 15;14(5):e0217096. doi: 10.1371/journal.pone.0217096. eCollection 2019.
5
Dynamic mitochondrial responses to a high-fat diet in Drosophila melanogaster.
Sci Rep. 2019 Mar 14;9(1):4531. doi: 10.1038/s41598-018-36060-5.
8
Treating fatty liver disease by modulating mitochondrial pyruvate metabolism.
Hepatol Commun. 2017 Apr 18;1(3):193-197. doi: 10.1002/hep4.1036. eCollection 2017 May.
9
"Alternative" fuels contributing to mitochondrial electron transport: Importance of non-classical pathways in the diversity of animal metabolism.
Comp Biochem Physiol B Biochem Mol Biol. 2018 Oct;224:185-194. doi: 10.1016/j.cbpb.2017.11.006. Epub 2017 Nov 15.
10
HMDB 4.0: the human metabolome database for 2018.
Nucleic Acids Res. 2018 Jan 4;46(D1):D608-D617. doi: 10.1093/nar/gkx1089.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验