Chong Jasmine, Wishart David S, Xia Jianguo
Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada.
Curr Protoc Bioinformatics. 2019 Dec;68(1):e86. doi: 10.1002/cpbi.86.
MetaboAnalyst (https://www.metaboanalyst.ca) is an easy-to-use web-based tool suite for comprehensive metabolomic data analysis, interpretation, and integration with other omics data. Since its first release in 2009, MetaboAnalyst has evolved significantly to meet the ever-expanding bioinformatics demands from the rapidly growing metabolomics community. In addition to providing a variety of data processing and normalization procedures, MetaboAnalyst supports a wide array of functions for statistical, functional, as well as data visualization tasks. Some of the most widely used approaches include PCA (principal component analysis), PLS-DA (partial least squares discriminant analysis), clustering analysis and visualization, MSEA (metabolite set enrichment analysis), MetPA (metabolic pathway analysis), biomarker selection via ROC (receiver operating characteristic) curve analysis, as well as time series and power analysis. The current version of MetaboAnalyst (4.0) features a complete overhaul of the user interface and significantly expanded underlying knowledge bases (compound database, pathway libraries, and metabolite sets). Three new modules have been added to support pathway activity prediction directly from mass peaks, biomarker meta-analysis, and network-based multi-omics data integration. To enable more transparent and reproducible analysis of metabolomic data, we have released a companion R package (MetaboAnalystR) to complement the web-based application. This article provides an overview of the main functional modules and the general workflow of MetaboAnalyst 4.0, followed by 12 detailed protocols: © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Data uploading, processing, and normalization Basic Protocol 2: Identification of significant variables Basic Protocol 3: Multivariate exploratory data analysis Basic Protocol 4: Functional interpretation of metabolomic data Basic Protocol 5: Biomarker analysis based on receiver operating characteristic (ROC) curves Basic Protocol 6: Time-series and two-factor data analysis Basic Protocol 7: Sample size estimation and power analysis Basic Protocol 8: Joint pathway analysis Basic Protocol 9: MS peaks to pathway activities Basic Protocol 10: Biomarker meta-analysis Basic Protocol 11: Knowledge-based network exploration of multi-omics data Basic Protocol 12: MetaboAnalystR introduction.
MetaboAnalyst(https://www.metaboanalyst.ca)是一款易于使用的基于网络的工具套件,用于全面的代谢组学数据分析、解读以及与其他组学数据的整合。自2009年首次发布以来,MetaboAnalyst已显著发展,以满足快速增长的代谢组学领域不断扩大的生物信息学需求。除了提供各种数据处理和标准化程序外,MetaboAnalyst还支持一系列用于统计、功能以及数据可视化任务的功能。一些最广泛使用的方法包括主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)、聚类分析与可视化、代谢物集富集分析(MSEA)、代谢途径分析(MetPA)、通过ROC(受试者工作特征)曲线分析进行生物标志物选择,以及时间序列和功效分析。MetaboAnalyst的当前版本(4.0)对用户界面进行了全面更新,并显著扩展了基础知识库(化合物数据库、途径库和代谢物集)。新增了三个模块,以支持直接从质谱峰进行途径活性预测、生物标志物荟萃分析以及基于网络的多组学数据整合。为了实现对代谢组学数据更透明和可重复的分析,我们发布了一个配套的R包(MetaboAnalystR)来补充基于网络的应用程序。本文概述了MetaboAnalyst 4.0的主要功能模块和一般工作流程,随后是12个详细方案:© 2019 John Wiley & Sons, Inc. 基本方案1:数据上传、处理和标准化 基本方案2:显著变量的识别 基本方案3:多变量探索性数据分析 基本方案4:代谢组学数据的功能解读 基本方案5:基于受试者工作特征(ROC)曲线的生物标志物分析 基本方案6:时间序列和双因素数据分析 基本方案7:样本量估计和功效分析 基本方案8:联合途径分析 基本方案9:质谱峰到途径活性 基本方案10:生物标志物荟萃分析 基本方案11:基于知识的多组学数据网络探索 基本方案12:MetaboAnalystR介绍