Suppr超能文献

一种使用犹豫模糊集的扩展模糊决策框架,用于治疗2019冠状病毒病(COVID-19)轻症的药物选择。

An extended fuzzy decision-making framework using hesitant fuzzy sets for the drug selection to treat the mild symptoms of Coronavirus Disease 2019 (COVID-19).

作者信息

Mishra Arunodaya Raj, Rani Pratibha, Krishankumar R, Ravichandran K S, Kar Samarjit

机构信息

Department of Mathematics, Government College Jaitwara-485221, MP, India.

Department of Mathematics, NIT, Warangal 506004, TS, India.

出版信息

Appl Soft Comput. 2021 May;103:107155. doi: 10.1016/j.asoc.2021.107155. Epub 2021 Feb 5.

Abstract

The whole world is presently under threat from Coronavirus Disease 2019 (COVID-19), a new disease spread by a virus of the corona family, called a novel coronavirus. To date, the cases due to this disease are increasing exponentially, but there is no vaccine of COVID-19 available commercially. However, several antiviral therapies are used to treat the mild symptoms of COVID-19 disease. Still, it is quite complicated and uncertain decision to choose the best antiviral therapy to treat the mild symptom of COVID-19. Hesitant Fuzzy Sets (HFSs) are proven effective and valuable structures to express uncertain information in real-world issues. Therefore, here we used the hesitant fuzzy decision-making (DM) method. This study has chosen five methods or medicines to treat the mild symptom of COVID-19. These alternatives have been ranked by seven criteria for choosing an optimal method. The purpose of this study is to develop an innovative Additive Ratio Assessment (ARAS) approach to elucidate the DM problems. Next, a divergence measure based procedure is developed to assess the relative importance of the criteria rationally. To do this, a novel divergence measure is introduced for HFSs. A case study of drug selection for COVID-19 disease is considered to demonstrate the practicability and efficacy of the developed idea in real-life applications. Afterward, the outcome shows that Remdesivir is the best medicine for patients with mild symptoms of the COVID-19. Sensitivity analysis is presented to ensure the permanence of the introduced framework. Moreover, a comprehensive comparison with existing models is discussed to show the advantages of the developed framework. Finally, the results prove that the introduced ARAS approach is more effective and reliable than the existing models.

摘要

目前,整个世界都受到2019冠状病毒病(COVID-19)的威胁,这是一种由冠状病毒家族的一种病毒传播的新疾病,称为新型冠状病毒。迄今为止,这种疾病的病例呈指数级增长,但尚无商业化的COVID-19疫苗。然而,几种抗病毒疗法被用于治疗COVID-19疾病的轻微症状。尽管如此,选择最佳抗病毒疗法来治疗COVID-19的轻微症状仍然是一个相当复杂和不确定的决定。犹豫模糊集(HFSs)被证明是在现实世界问题中表达不确定信息的有效且有价值的结构。因此,在这里我们使用了犹豫模糊决策(DM)方法。本研究选择了五种方法或药物来治疗COVID-19的轻微症状。这些备选方案根据七个选择最优方法的标准进行了排名。本研究的目的是开发一种创新的加法比率评估(ARAS)方法来阐明决策问题。接下来,开发了一种基于散度测度的程序来合理评估标准的相对重要性。为此,引入了一种用于HFSs的新型散度测度。考虑了一个COVID-19疾病药物选择的案例研究,以证明所提出的想法在实际应用中的实用性和有效性。结果表明,瑞德西韦是治疗COVID-19轻微症状患者的最佳药物。进行了敏感性分析以确保所引入框架的稳定性。此外,还讨论了与现有模型的全面比较,以展示所开发框架的优势。最后,结果证明所引入的ARAS方法比现有模型更有效、更可靠。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/060e/7862040/60025904173a/fx1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验