Terzopoulou Anastasia, Wang Xiaopu, Chen Xiang-Zhong, Palacios-Corella Mario, Pujante Carlos, Herrero-Martín Javier, Qin Xiao-Hua, Sort Jordi, deMello Andrew J, Nelson Bradley J, Puigmartí-Luis Josep, Pané Salvador
Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland.
Instituto de Ciencia Molecular, Universidad de Valencia, Catedratico Jose Beltran 2, Paterna, 46980, Spain.
Adv Healthc Mater. 2020 Oct;9(20):e2001031. doi: 10.1002/adhm.202001031. Epub 2020 Sep 9.
Microrobots and metal-organic frameworks (MOFs) have been identified as promising carriers for drug delivery applications. While clinical applications of microrobots are limited by their low drug loading efficiencies and the poor degradability of the materials used for their fabrication, MOFs lack motility and targeted drug delivery capabilities. The combination of these two fields marks the beginning of a new era; MOF-based small-scale robots (MOFBOTs) for biomedical applications. Yet, biodegradability is a major hurdle in the field of micro- and nanoswimmers including small-scale robots. Here, a highly integrated MOFBOT that is able to realize magnetic locomotion, drug delivery, and selective degradation in cell cultures is reported for the first time. The MOF used in the investigations does not only allow a superior loading of chemotherapeutic drugs and their controlled release via a pH-responsive degradation but it also enables the controlled locomotion of enzymatically biodegradable gelatin-based helical microrobots under magnetic fields. The degradation of the integrated MOFBOT is observed after two weeks, when all its components fully degrade. Additionally, drug delivery studies performed in cancer cell cultures show reduced viability upon delivery of Doxorubicin within short time frames. This MOFBOT system opens new avenues for highly integrated fully biodegradable small-scale robots.
微型机器人和金属有机框架(MOF)已被确认为药物递送应用中颇具前景的载体。虽然微型机器人的临床应用受到其低载药效率以及制造所用材料可降解性差的限制,但MOF缺乏运动能力和靶向药物递送能力。这两个领域的结合标志着一个新时代的开始;用于生物医学应用的基于MOF的小型机器人(MOFBOT)。然而,生物可降解性是包括小型机器人在内的微型和纳米游泳器领域的一个主要障碍。在此,首次报道了一种高度集成的MOFBOT,它能够在细胞培养中实现磁驱动、药物递送和选择性降解。研究中使用的MOF不仅允许高效负载化疗药物并通过pH响应降解实现其控释,还能使基于可酶解明胶的螺旋微型机器人在磁场下实现可控运动。在两周后观察到集成MOFBOT的降解,此时其所有组件完全降解。此外,在癌细胞培养中进行的药物递送研究表明,在短时间内递送阿霉素后细胞活力降低。这种MOFBOT系统为高度集成的完全可生物降解小型机器人开辟了新途径。