Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States.
Department of Pharmacology, University of Pennsylvania, 38 John Morgan Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104-6084, United States.
ACS Chem Biol. 2020 Oct 16;15(10):2714-2721. doi: 10.1021/acschembio.0c00499. Epub 2020 Sep 23.
Messenger RNA (mRNA) isolated from single cells can generate powerful biological insights, including the discovery of new cell types with unique functions as well as markers potentially predicting a cell's response to various therapeutic agents. We previously introduced an oligonucleotide-based technique for site-selective, photoinduced biotinylation and capture of mRNA within a living cell called transcriptome analysis (TIVA). Successful application of the TIVA technique hinges upon its oligonucleotide probe remaining completely inert (or "caged") to mRNA unless photoactivated. To improve the reliability of TIVA probe caging in diverse and challenging biological conditions, we applied a rational design process involving iterative modifications to the oligonucleotide construct. In this work, we discuss these design motivations and present an optimized probe with minimal background binding to mRNA prior to photolysis. We assess its caging performance through multiple assays including FRET analysis, native gel comigration, and pull down with model mRNA transcripts. Finally, we demonstrate that this improved probe can also isolate mRNA from single living neurons in brain tissue slices with excellent caging control.
从单细胞中分离得到的信使 RNA(mRNA)可以产生强大的生物学见解,包括发现具有独特功能的新细胞类型,以及可能预测细胞对各种治疗剂反应的标志物。我们之前介绍了一种基于寡核苷酸的技术,用于在活细胞内对 mRNA 进行位点选择性、光诱导生物素化和捕获,称为转录组分析(TIVA)。TIVA 技术的成功应用取决于其寡核苷酸探针在未光激活的情况下对 mRNA 完全惰性(或“笼闭”)。为了提高 TIVA 探针笼闭在各种具有挑战性的生物学条件下的可靠性,我们应用了涉及对寡核苷酸结构进行迭代修饰的合理设计过程。在这项工作中,我们讨论了这些设计动机,并展示了一种优化的探针,其在光解之前与 mRNA 的背景结合最小。我们通过多种测定方法评估了其笼闭性能,包括 FRET 分析、天然凝胶共迁移和模型 mRNA 转录物的下拉实验。最后,我们证明这种改进的探针也可以从脑组织切片中的单个活神经元中分离出 mRNA,并且具有出色的笼闭控制。
ACS Chem Biol. 2020-10-16
ChemPhotoChem. 2021-10
PLoS One. 2013-9-9
Molecules. 2021-3-9
Nat Methods. 2011-3-30
J Inorg Biochem. 2015-9
Nat Methods. 2014-1-12
Methods Mol Biol. 2015
J Am Chem Soc. 2023-5-3
Front Cell Dev Biol. 2023-3-3
ACS Chem Biol. 2022-12-16
ChemPhotoChem. 2021-10
Molecules. 2021-3-9
Adv Drug Deliv Rev. 2021-4
J Am Chem Soc. 2020-7-1
Proc Natl Acad Sci U S A. 2019-9-9
Nucleic Acids Res. 2019-6-20