Suppr超能文献

行政编码数据在检测儿科癌症患者侵袭性真菌感染中的分类性能。

Classification performance of administrative coding data for detection of invasive fungal infection in paediatric cancer patients.

机构信息

National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.

Paediatric Integrated Cancer Service, Royal Children's Hospital, Parkville, Victoria, Australia.

出版信息

PLoS One. 2020 Sep 9;15(9):e0238889. doi: 10.1371/journal.pone.0238889. eCollection 2020.

Abstract

BACKGROUND

Invasive fungal infection (IFI) detection requires application of complex case definitions by trained staff. Administrative coding data (ICD-10-AM) may provide a simplified method for IFI surveillance, but accuracy of case ascertainment in children with cancer is unknown.

OBJECTIVE

To determine the classification performance of ICD-10-AM codes for detecting IFI using a gold-standard dataset (r-TERIFIC) of confirmed IFIs in paediatric cancer patients at a quaternary referral centre (Royal Children's Hospital) in Victoria, Australia from 1st April 2004 to 31st December 2013.

METHODS

ICD-10-AM codes denoting IFI in paediatric patients (<18-years) with haematologic or solid tumour malignancies were extracted from the Victorian Admitted Episodes Dataset and linked to the r-TERIFIC dataset. Sensitivity, positive predictive value (PPV) and the F1 scores of the ICD-10-AM codes were calculated.

RESULTS

Of 1,671 evaluable patients, 113 (6.76%) had confirmed IFI diagnoses according to gold-standard criteria, while 114 (6.82%) cases were identified using the codes. Of the clinical IFI cases, 68 were in receipt of ≥1 ICD-10-AM code(s) for IFI, corresponding to an overall sensitivity, PPV and F1 score of 60%, respectively. Sensitivity was highest for proven IFI (77% [95% CI: 58-90]; F1 = 47%) and invasive candidiasis (83% [95% CI: 61-95]; F1 = 76%) and lowest for other/unspecified IFI (20% [95% CI: 5.05-72%]; F1 = 5.00%). The most frequent misclassification was coding of invasive aspergillosis as invasive candidiasis.

CONCLUSION

ICD-10-AM codes demonstrate moderate sensitivity and PPV to detect IFI in children with cancer. However, specific subsets of proven IFI and invasive candidiasis (codes B37.x) are more accurately coded.

摘要

背景

侵袭性真菌感染(IFI)的检测需要经过培训的医务人员应用复杂的病例定义。行政编码数据(ICD-10-AM)可能为IFI 监测提供一种简化方法,但在儿童癌症患者中,其病例确定的准确性尚不清楚。

目的

使用澳大利亚维多利亚州四所转诊中心(皇家儿童医院)的儿童癌症患者确诊IFI 的金标准数据集(r-TERIFIC),确定用于检测IFI 的 ICD-10-AM 代码的分类性能。该数据集包含了 2004 年 4 月 1 日至 2013 年 12 月 31 日期间的病例。

方法

从维多利亚州住院记录数据集提取儿科患者(<18 岁)血液系统或实体瘤恶性肿瘤的 IFI ICD-10-AM 编码,并与 r-TERIFIC 数据集进行链接。计算 ICD-10-AM 编码的灵敏度、阳性预测值(PPV)和 F1 分数。

结果

在 1671 例可评估患者中,根据金标准标准,有 113 例(6.76%)被确诊为 IFI,而 114 例(6.82%)通过编码识别。在临床 IFI 病例中,有 68 例接受了至少 1 个 IFI 的 ICD-10-AM 编码,对应的总体灵敏度、PPV 和 F1 分数分别为 60%、60%和 60%。证实的 IFI(77%[95%CI:58-90];F1=47%)和侵袭性念珠菌病(83%[95%CI:61-95];F1=76%)的灵敏度最高,而其他/未明确 IFI(20%[95%CI:5.05-72%];F1=5.00%)的灵敏度最低。最常见的错误分类是编码侵袭性曲霉菌病为侵袭性念珠菌病。

结论

ICD-10-AM 编码对检测儿童癌症患者的 IFI 具有中等的灵敏度和 PPV。然而,特定的 IFI 子集和侵袭性念珠菌病(B37.x 代码)的编码更为准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b4f/7480858/3a8b52de72c4/pone.0238889.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验