Shockley Keith R, Cora Michelle C, Malarkey David E, Jackson-Humbles Daven, Vallant Molly, Collins Brad J, Mutlu Esra, Robinson Veronica G, Waidyanatha Surayma, Zmarowski Amy, Machesky Nicholas, Richey Jamie, Harbo Sam, Cheng Emily, Patton Kristin, Sparrow Barney, Dunnick June K
Biostatistics & Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, United States.
Cellular & Molecular Pathology Branch, Division of the National Toxicology Program (DNTP), NIEHS, Research Triangle Park, NC 27709, United States.
Data Brief. 2020 Aug 5;32:106136. doi: 10.1016/j.dib.2020.106136. eCollection 2020 Oct.
Large-scale gene expression analysis of legacy* and emerging** brominated flame retardants were conducted in the male Harlan Sprague Dawley rat [1]. Each animal was dosed for 5 days with the chemical at concentrations of 0.1 - 1000 μmol/kg body weight per day. Following the last dose, a specimen of the left liver was removed for RNA extraction. The amplified RNA (aRNA) was fragmented and then hybridized to Affymetrix Rat Genome 230 2.0 Arrays. Each GeneChip® array was scanned using an Affymetrix GeneChip® Scanner 3000 7 G to generate raw expression level data (.CEL files). Statistical contrasts were used to find pairwise gene expression differences between the control group and each dose group using the R/maanova package [2]. The transcriptomic data can be used to provide insights into the degree of toxicity, toxic mechanisms, disease pathways activated by exposure, and for benchmark dose analysis. The gene expression data for each of the nine flame retardants discussed here accompanies the research article entitled, "Comparative Toxicity and Liver Transcriptomics of Legacy and Emerging Brominated Flame Retardants following 5-Day Exposure in the Rat" [1]. * polybrominated diphenyl ether 47 (PBDE 47), decabromodiphenyl ether (decaBDE), hexabromocyclododecane (HBCD); ** 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB); bis(2-ethylhexyl) tetrabromophthalate (TBPH); tetrabromobisphenol A-bis(2,3-dibromopropyl ether (TBBPA-DBPE); 1,2-bis(tribromophenoxy)ethane (BTBPE); decabromodiphenylethane (DBDPE); hexachlorocyclopentadienyl-dibromocyclooctane (HCDBCO).
对传统及新型溴化阻燃剂进行了雄性哈兰·斯普拉格·道利大鼠的大规模基因表达分析[1]。每只动物每天以0.1 - 1000 μmol/kg体重的浓度给予该化学物质,持续5天。末次给药后,取出左肝样本用于RNA提取。扩增后的RNA(aRNA)被片段化,然后与Affymetrix大鼠基因组230 2.0阵列杂交。使用Affymetrix GeneChip® Scanner 3000 7G扫描每个基因芯片阵列,以生成原始表达水平数据(.CEL文件)。使用R/maanova软件包[2]通过统计对比来找出对照组与每个剂量组之间的成对基因表达差异。转录组数据可用于深入了解毒性程度、毒性机制、暴露激活的疾病途径,并用于基准剂量分析。本文讨论的九种阻燃剂各自的基因表达数据随附于题为《大鼠5天暴露后传统及新型溴化阻燃剂的比较毒性与肝脏转录组学》的研究文章[1]。* 多溴二苯醚47(PBDE 47)、十溴二苯醚(十溴联苯醚)、六溴环十二烷(HBCD);** 2-乙基己基-2,3,4,5-四溴苯甲酸酯(TBB);双(2-乙基己基)四溴邻苯二甲酸酯(TBPH);四溴双酚A-双(2,3-二溴丙基醚)(TBBPA-DBPE);1,2-双(三溴苯氧基)乙烷(BTBPE);十溴二苯乙烷(DBDPE);六氯环戊二烯基-二溴环辛烷(HCDBCO)