Suppr超能文献

用于跨多个数据集检测糖尿病视网膜病变的可解释端到端深度学习。

Explainable end-to-end deep learning for diabetic retinopathy detection across multiple datasets.

作者信息

Chetoui Mohamed, Akhloufi Moulay A

机构信息

Université de Moncton, Department of Computer Science, Perception, Robotics, and Intelligent Machines Research Group, Moncton, New Brunswick, Canada.

出版信息

J Med Imaging (Bellingham). 2020 Jul;7(4):044503. doi: 10.1117/1.JMI.7.4.044503. Epub 2020 Aug 28.

Abstract

: Diabetic retinopathy (DR) is characterized by retinal lesions affecting people having diabetes for several years. It is one of the leading causes of visual impairment worldwide. To diagnose this disease, ophthalmologists need to manually analyze retinal fundus images. Computer-aided diagnosis systems can help alleviate this burden by automatically detecting DR on retinal images, thus saving physicians' precious time and reducing costs. The objective of this study is to develop a deep learning algorithm capable of detecting DR on retinal fundus images. Nine public datasets and more than 90,000 images are used to assess the efficiency of the proposed technique. In addition, an explainability algorithm is developed to visually show the DR signs detected by the deep model. : The proposed deep learning algorithm fine-tunes a pretrained deep convolutional neural network for DR detection. The model is trained on a subset of EyePACS dataset using a cosine annealing strategy for decaying the learning rate with warm up, thus improving the training accuracy. Tests are conducted on the nine datasets. An explainability algorithm based on gradient-weighted class activation mapping is developed to visually show the signs selected by the model to classify the retina images as DR. : The proposed network leads to higher classification rates with an area under curve (AUC) of 0.986, sensitivity = 0.958, and specificity = 0.971 for EyePACS. For MESSIDOR, MESSIDOR-2, DIARETDB0, DIARETDB1, STARE, IDRID, E-ophtha, and UoA-DR, the AUC is 0.963, 0.979, 0.986, 0.988, 0.964, 0.957, 0.984, and 0.990, respectively. : The obtained results achieve state-of-the-art performance and outperform past published works relying on training using only publicly available datasets. The proposed approach can robustly classify fundus images and detect DR. An explainability model was developed and showed that our model was able to efficiently identify different signs of DR and detect this health issue.

摘要

糖尿病视网膜病变(DR)的特征是视网膜病变,影响患有糖尿病数年的人群。它是全球视力损害的主要原因之一。为了诊断这种疾病,眼科医生需要手动分析视网膜眼底图像。计算机辅助诊断系统可以通过自动检测视网膜图像上的DR来帮助减轻这一负担,从而节省医生的宝贵时间并降低成本。本研究的目的是开发一种能够在视网膜眼底图像上检测DR的深度学习算法。使用九个公共数据集和超过90,000张图像来评估所提出技术的效率。此外,还开发了一种可解释性算法,以直观地展示深度模型检测到的DR体征。:所提出的深度学习算法对预训练的深度卷积神经网络进行微调以进行DR检测。该模型在EyePACS数据集的一个子集上进行训练,使用余弦退火策略并通过热身来衰减学习率,从而提高训练精度。在这九个数据集上进行测试。开发了一种基于梯度加权类激活映射的可解释性算法,以直观地展示模型选择的将视网膜图像分类为DR的体征。:所提出的网络在EyePACS数据集上的曲线下面积(AUC)为0.986,灵敏度=0.958,特异性=0.971,从而实现了更高的分类率。对于MESSIDOR、MESSIDOR-2、DIARETDB0、DIARETDB1、STARE、IDRID、E-ophtha和UoA-DR,AUC分别为0.963、0.979、0.986、0.988、0.964、0.957、0.984和0.990。:所获得的结果达到了当前的先进性能,并且优于过去仅使用公开可用数据集进行训练的已发表作品。所提出的方法能够稳健地对眼底图像进行分类并检测DR。开发了一种可解释性模型,表明我们的模型能够有效地识别DR的不同体征并检测出这个健康问题。

相似文献

1
Explainable end-to-end deep learning for diabetic retinopathy detection across multiple datasets.
J Med Imaging (Bellingham). 2020 Jul;7(4):044503. doi: 10.1117/1.JMI.7.4.044503. Epub 2020 Aug 28.
2
Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy.
Front Med (Lausanne). 2022 Nov 8;9:1050436. doi: 10.3389/fmed.2022.1050436. eCollection 2022.
4
Explainable Diabetic Retinopathy using EfficientNET.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1966-1969. doi: 10.1109/EMBC44109.2020.9175664.
5
Automatic Detection of Diabetic Retinopathy in Retinal Fundus Photographs Based on Deep Learning Algorithm.
Transl Vis Sci Technol. 2019 Nov 12;8(6):4. doi: 10.1167/tvst.8.6.4. eCollection 2019 Nov.
6
Automated Identification of Diabetic Retinopathy Using Deep Learning.
Ophthalmology. 2017 Jul;124(7):962-969. doi: 10.1016/j.ophtha.2017.02.008. Epub 2017 Mar 27.
7
Deep Learning Frameworks for Diabetic Retinopathy Detection with Smartphone-based Retinal Imaging Systems.
Pattern Recognit Lett. 2020 Jul;135:409-417. doi: 10.1016/j.patrec.2020.04.009. Epub 2020 May 13.
8
Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading.
Comput Methods Programs Biomed. 2024 Jun;249:108160. doi: 10.1016/j.cmpb.2024.108160. Epub 2024 Apr 3.

引用本文的文献

1
Comprehensive Review: Machine and Deep Learning in Brain Stroke Diagnosis.
Sensors (Basel). 2024 Jul 4;24(13):4355. doi: 10.3390/s24134355.
2
Deciphering the Feature Representation of Deep Neural Networks for High-Performance AI.
IEEE Trans Pattern Anal Mach Intell. 2024 Aug;46(8):5273-5287. doi: 10.1109/TPAMI.2024.3363642. Epub 2024 Jul 2.
4
Diabetic Retinopathy and Diabetic Macular Edema Detection Using Ensemble Based Convolutional Neural Networks.
Diagnostics (Basel). 2023 Mar 6;13(5):1001. doi: 10.3390/diagnostics13051001.
5
Features extraction using encoded local binary pattern for detection and grading diabetic retinopathy.
Health Inf Sci Syst. 2022 Jun 29;10(1):14. doi: 10.1007/s13755-022-00181-z. eCollection 2022 Dec.
6
Explainable Vision Transformers and Radiomics for COVID-19 Detection in Chest X-rays.
J Clin Med. 2022 May 26;11(11):3013. doi: 10.3390/jcm11113013.
7
A Proposed Framework for Machine Learning-Aided Triage in Public Specialty Ophthalmology Clinics in Hong Kong.
Ophthalmol Ther. 2021 Dec;10(4):703-713. doi: 10.1007/s40123-021-00405-7. Epub 2021 Oct 12.
8
Automated Detection and Diagnosis of Diabetic Retinopathy: A Comprehensive Survey.
J Imaging. 2021 Aug 27;7(9):165. doi: 10.3390/jimaging7090165.
9
Applications of interpretability in deep learning models for ophthalmology.
Curr Opin Ophthalmol. 2021 Sep 1;32(5):452-458. doi: 10.1097/ICU.0000000000000780.

本文引用的文献

1
An efficient framework for automated screening of Clinically Significant Macular Edema.
Comput Biol Med. 2021 Mar;130:104128. doi: 10.1016/j.compbiomed.2020.104128. Epub 2020 Nov 24.
2
Norm-Preservation: Why Residual Networks Can Become Extremely Deep?
IEEE Trans Pattern Anal Mach Intell. 2021 Nov;43(11):3980-3990. doi: 10.1109/TPAMI.2020.2990339. Epub 2021 Oct 1.
3
Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey.
Artif Intell Med. 2019 Aug;99:101701. doi: 10.1016/j.artmed.2019.07.009. Epub 2019 Aug 7.
5
Quality and content analysis of fundus images using deep learning.
Comput Biol Med. 2019 May;108:317-331. doi: 10.1016/j.compbiomed.2019.03.019. Epub 2019 Mar 26.
6
Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy.
Biomed Eng Lett. 2017 Aug 31;8(1):41-57. doi: 10.1007/s13534-017-0047-y. eCollection 2018 Feb.
7
Transforming Retinal Photographs to Entropy Images in Deep Learning to Improve Automated Detection for Diabetic Retinopathy.
J Ophthalmol. 2018 Sep 10;2018:2159702. doi: 10.1155/2018/2159702. eCollection 2018.
8
Manually segmented vascular networks from images of retina with proliferative diabetic and hypertensive retinopathy.
Data Brief. 2018 Mar 15;18:470-473. doi: 10.1016/j.dib.2018.03.041. eCollection 2018 Jun.
9
Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks.
JAMA Ophthalmol. 2018 Jul 1;136(7):803-810. doi: 10.1001/jamaophthalmol.2018.1934.
10
An ensemble deep learning based approach for red lesion detection in fundus images.
Comput Methods Programs Biomed. 2018 Jan;153:115-127. doi: 10.1016/j.cmpb.2017.10.017. Epub 2017 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验