Chetoui Mohamed, Akhloufi Moulay A
Université de Moncton, Department of Computer Science, Perception, Robotics, and Intelligent Machines Research Group, Moncton, New Brunswick, Canada.
J Med Imaging (Bellingham). 2020 Jul;7(4):044503. doi: 10.1117/1.JMI.7.4.044503. Epub 2020 Aug 28.
: Diabetic retinopathy (DR) is characterized by retinal lesions affecting people having diabetes for several years. It is one of the leading causes of visual impairment worldwide. To diagnose this disease, ophthalmologists need to manually analyze retinal fundus images. Computer-aided diagnosis systems can help alleviate this burden by automatically detecting DR on retinal images, thus saving physicians' precious time and reducing costs. The objective of this study is to develop a deep learning algorithm capable of detecting DR on retinal fundus images. Nine public datasets and more than 90,000 images are used to assess the efficiency of the proposed technique. In addition, an explainability algorithm is developed to visually show the DR signs detected by the deep model. : The proposed deep learning algorithm fine-tunes a pretrained deep convolutional neural network for DR detection. The model is trained on a subset of EyePACS dataset using a cosine annealing strategy for decaying the learning rate with warm up, thus improving the training accuracy. Tests are conducted on the nine datasets. An explainability algorithm based on gradient-weighted class activation mapping is developed to visually show the signs selected by the model to classify the retina images as DR. : The proposed network leads to higher classification rates with an area under curve (AUC) of 0.986, sensitivity = 0.958, and specificity = 0.971 for EyePACS. For MESSIDOR, MESSIDOR-2, DIARETDB0, DIARETDB1, STARE, IDRID, E-ophtha, and UoA-DR, the AUC is 0.963, 0.979, 0.986, 0.988, 0.964, 0.957, 0.984, and 0.990, respectively. : The obtained results achieve state-of-the-art performance and outperform past published works relying on training using only publicly available datasets. The proposed approach can robustly classify fundus images and detect DR. An explainability model was developed and showed that our model was able to efficiently identify different signs of DR and detect this health issue.
糖尿病视网膜病变(DR)的特征是视网膜病变,影响患有糖尿病数年的人群。它是全球视力损害的主要原因之一。为了诊断这种疾病,眼科医生需要手动分析视网膜眼底图像。计算机辅助诊断系统可以通过自动检测视网膜图像上的DR来帮助减轻这一负担,从而节省医生的宝贵时间并降低成本。本研究的目的是开发一种能够在视网膜眼底图像上检测DR的深度学习算法。使用九个公共数据集和超过90,000张图像来评估所提出技术的效率。此外,还开发了一种可解释性算法,以直观地展示深度模型检测到的DR体征。:所提出的深度学习算法对预训练的深度卷积神经网络进行微调以进行DR检测。该模型在EyePACS数据集的一个子集上进行训练,使用余弦退火策略并通过热身来衰减学习率,从而提高训练精度。在这九个数据集上进行测试。开发了一种基于梯度加权类激活映射的可解释性算法,以直观地展示模型选择的将视网膜图像分类为DR的体征。:所提出的网络在EyePACS数据集上的曲线下面积(AUC)为0.986,灵敏度=0.958,特异性=0.971,从而实现了更高的分类率。对于MESSIDOR、MESSIDOR-2、DIARETDB0、DIARETDB1、STARE、IDRID、E-ophtha和UoA-DR,AUC分别为0.963、0.979、0.986、0.988、0.964、0.957、0.984和0.990。:所获得的结果达到了当前的先进性能,并且优于过去仅使用公开可用数据集进行训练的已发表作品。所提出的方法能够稳健地对眼底图像进行分类并检测DR。开发了一种可解释性模型,表明我们的模型能够有效地识别DR的不同体征并检测出这个健康问题。