Suppr超能文献

深度学习中视网膜照片向熵图像的转换以改善糖尿病视网膜病变的自动检测

Transforming Retinal Photographs to Entropy Images in Deep Learning to Improve Automated Detection for Diabetic Retinopathy.

作者信息

Lin Gen-Min, Chen Mei-Juan, Yeh Chia-Hung, Lin Yu-Yang, Kuo Heng-Yu, Lin Min-Hui, Chen Ming-Chin, Lin Shinfeng D, Gao Ying, Ran Anran, Cheung Carol Y

机构信息

Department of Electrical Engineering, National Dong Hwa University, Hualien, Taiwan.

Department of Medicine, Hualien Armed Forces General Hospital, Hualien, Taiwan.

出版信息

J Ophthalmol. 2018 Sep 10;2018:2159702. doi: 10.1155/2018/2159702. eCollection 2018.

Abstract

Entropy images, representing the complexity of original fundus photographs, may strengthen the contrast between diabetic retinopathy (DR) lesions and unaffected areas. The aim of this study is to compare the detection performance for severe DR between original fundus photographs and entropy images by deep learning. A sample of 21,123 interpretable fundus photographs obtained from a publicly available data set was expanded to 33,000 images by rotating and flipping. All photographs were transformed into entropy images using block size 9 and downsized to a standard resolution of 100 × 100 pixels. The stages of DR are classified into 5 grades based on the International Clinical Diabetic Retinopathy Disease Severity Scale: Grade 0 (no DR), Grade 1 (mild nonproliferative DR), Grade 2 (moderate nonproliferative DR), Grade 3 (severe nonproliferative DR), and Grade 4 (proliferative DR). Of these 33,000 photographs, 30,000 images were randomly selected as the training set, and the remaining 3,000 images were used as the testing set. Both the original fundus photographs and the entropy images were used as the inputs of convolutional neural network (CNN), and the results of detecting referable DR (Grades 2-4) as the outputs from the two data sets were compared. The detection accuracy, sensitivity, and specificity of using the original fundus photographs data set were 81.80%, 68.36%, 89.87%, respectively, for the entropy images data set, and the figures significantly increased to 86.10%, 73.24%, and 93.81%, respectively (all values <0.001). The entropy image quantifies the amount of information in the fundus photograph and efficiently accelerates the generating of feature maps in the CNN. The research results draw the conclusion that transformed entropy imaging of fundus photographs can increase the machinery detection accuracy, sensitivity, and specificity of referable DR for the deep learning-based system.

摘要

熵图像代表了原始眼底照片的复杂性,可能会增强糖尿病视网膜病变(DR)病变与未受影响区域之间的对比度。本研究的目的是通过深度学习比较原始眼底照片和熵图像对重度DR的检测性能。从一个公开可用的数据集中获取的21,123张可解释的眼底照片样本,通过旋转和翻转扩展到33,000张图像。所有照片均使用9×9的块大小转换为熵图像,并缩小到100×100像素的标准分辨率。根据国际临床糖尿病视网膜病变疾病严重程度量表,DR的阶段分为5级:0级(无DR)、1级(轻度非增殖性DR)、2级(中度非增殖性DR)、3级(重度非增殖性DR)和4级(增殖性DR)。在这33,000张照片中,随机选择30,000张图像作为训练集,其余3,000张图像用作测试集。原始眼底照片和熵图像均用作卷积神经网络(CNN)的输入,并比较两个数据集检测可参考DR(2-4级)的结果作为输出。使用原始眼底照片数据集的检测准确率、灵敏度和特异性分别为81.80%、68.36%、89.87%,对于熵图像数据集,这些数字分别显著提高到86.10%、73.24%和93.81%(所有P值<0.001)。熵图像量化了眼底照片中的信息量,并有效加速了CNN中特征图的生成。研究结果得出结论,眼底照片的变换熵成像可以提高基于深度学习系统的可参考DR的机器检测准确率、灵敏度和特异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c020/6151683/5e269c18b51b/JOPH2018-2159702.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验