Aligarh Muslim University, Faculty of Life Sciences, Department of Botany, Plant Physiology Section, Aligarh, 202002, India.
University of Bialystok, Faculty of Biology, Department of Biology and Plant Ecology, Konstantego Ciolkowskiego 1J, 15-245, Bialystok, Poland.
Plant Physiol Biochem. 2020 Nov;156:64-77. doi: 10.1016/j.plaphy.2020.08.042. Epub 2020 Aug 29.
Salinity is one of the major threats to sustainable agriculture that globally decreases plant production by impairing various physiological, biochemical, and molecular function. In particular, salinity hampers germination, growth, photosynthesis, transpiration, and stomatal conductance. Salinity decreases leaf water potential and turgor pressure and generates osmotic stress. Salinity enhances reactive oxygen species (ROS) content in the plant cell as a result of ion toxicity and disturbs ion homeostasis. Thus, it imbalances nutrient uptake, disintegrates membrane, and various ultrastructure. Consequently, salinity leads to osmotic and ionic stress. Plants respond to salinity by modulating various morpho-physiological, anatomical, and biochemical traits by regulating ion homeostasis and compartmentalization, antioxidant machinery, and biosynthesis of osmoprotectants and phytohormones, i. e, auxins, abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellins, salicylic acid, jasmonic acid, and polyamines. Thus, this further modulates plant osmoticum, decreases ion toxicity, and scavenges ROS. Plants upregulate various genes and proteins that participate in salinity tolerance. They also promote the production of various phytohormones and metabolites that mitigate the toxic effect of salinity. Based on recent papers, the deleterious effect of salinity on plant physiology is discussed. Furthermore, it evaluates the physiological and biochemical responses of the plant to salinity along with phytohormone response. This review paper also highlights omics (genomics, transcriptomics, proteomics, and metabolomics) approach to understand salt stress tolerance.
盐度是可持续农业的主要威胁之一,它通过损害各种生理、生化和分子功能来降低植物的产量。特别是,盐度会阻碍发芽、生长、光合作用、蒸腾和气孔导度。盐度降低叶片水势和膨压,并产生渗透胁迫。盐度会增加植物细胞中的活性氧(ROS)含量,这是由于离子毒性和离子平衡紊乱造成的。因此,它会破坏养分吸收、膜的完整性和各种超微结构。结果,盐度会导致渗透胁迫和离子胁迫。植物通过调节离子平衡和区室化、抗氧化机制以及渗透保护剂和植物激素的生物合成等多种形态生理、解剖和生化特性来应对盐度,即生长素、脱落酸、油菜素内酯、细胞分裂素、乙烯、赤霉素、水杨酸、茉莉酸和多胺。这进一步调节植物的渗透压,降低离子毒性,并清除 ROS。植物上调参与耐盐性的各种基因和蛋白质。它们还促进各种植物激素和代谢物的产生,减轻盐度的毒性作用。基于最近的论文,本文讨论了盐度对植物生理学的有害影响。此外,它还评估了植物对盐度的生理和生化反应以及植物激素的反应。本文综述还强调了组学(基因组学、转录组学、蛋白质组学和代谢组学)方法来理解耐盐性。