Communication Department, Loyola University Maryland.
Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health.
Disaster Med Public Health Prep. 2022 Apr;16(2):561-569. doi: 10.1017/dmp.2020.347. Epub 2020 Sep 10.
The purpose of this study was to demonstrate the use of social network analysis to understand public discourse on Twitter around the novel coronavirus disease 2019 (COVID-19) pandemic. We examined different network properties that might affect the successful dissemination by and adoption of public health messages from public health officials and health agencies.
We focused on conversations on Twitter during 3 key communication events from late January to early June of 2020. We used Netlytic, a Web-based software that collects publicly available data from social media sites such as Twitter.
We found that the network of conversations around COVID-19 is highly decentralized, fragmented, and loosely connected; these characteristics can hinder the successful dissemination of public health messages in a network. Competing conversations and misinformation can hamper risk communication efforts in a way that imperil public health.
Looking at basic metrics might create a misleading picture of the effectiveness of risk communication efforts on social media if not analyzed within the context of the larger network. Social network analysis of conversations on social media should be an integral part of how public health officials and agencies plan, monitor, and evaluate risk communication efforts.
本研究旨在展示如何使用社会网络分析来理解围绕 2019 年新型冠状病毒病(COVID-19)大流行在 Twitter 上的公众讨论。我们研究了不同的网络属性,这些属性可能会影响公共卫生官员和卫生机构发布和采用公共卫生信息的成功传播。
我们专注于 2020 年 1 月下旬至 6 月初三个关键沟通事件期间在 Twitter 上的对话。我们使用了 Netlytic,这是一款基于网络的软件,可从 Twitter 等社交媒体网站收集公开可用的数据。
我们发现,围绕 COVID-19 的对话网络高度分散、碎片化且连接松散;这些特征可能会阻碍公共卫生信息在网络中的成功传播。竞争的对话和错误信息可能会以危及公共卫生的方式阻碍风险沟通工作。
如果不在更大的网络背景下分析,仅查看基本指标可能会对社交媒体上风险沟通工作的有效性产生误导性的认识。社交媒体上对话的社会网络分析应该成为公共卫生官员和机构规划、监测和评估风险沟通工作的一个组成部分。