Suppr超能文献

基于注意力机制的遥感影像变化检测

Change Detection of Remote Sensing Images Based on Attention Mechanism.

作者信息

Chen Long, Zhang Dezheng, Li Peng, Lv Peng

机构信息

School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), No. 30 Xueyuan Road, Haidian District, Beijing 100083, China.

Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing, China.

出版信息

Comput Intell Neurosci. 2020 Aug 25;2020:6430627. doi: 10.1155/2020/6430627. eCollection 2020.

Abstract

In recent years, image processing methods based on convolutional neural networks (CNNs) have achieved very good results. At the same time, many branch techniques have been proposed to improve accuracy. Aiming at the change detection task of remote sensing images, we propose a new network based on U-Net in this paper. The attention mechanism is cleverly applied in the change detection task, and the data-dependent upsampling (DUpsampling) method is used at the same time, so that the network shows improvement in accuracy, and the calculation amount is greatly reduced. The experimental results show that, in the two-phase images of Yinchuan City, the proposed network has a better antinoise ability and can avoid false detection to a certain extent.

摘要

近年来,基于卷积神经网络(CNN)的图像处理方法取得了非常好的效果。同时,人们提出了许多分支技术来提高准确率。针对遥感图像的变化检测任务,本文提出了一种基于U-Net的新网络。将注意力机制巧妙地应用于变化检测任务中,同时采用数据依赖上采样(DUpsampling)方法,使网络在准确率上有所提高,且计算量大大减少。实验结果表明, 在银川市的两期影像中,所提网络具有较好的抗噪能力,且在一定程度上能够避免误检。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ed4/7468617/a13be9d0a489/CIN2020-6430627.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验