Suppr超能文献

多尺度遥感图像道路提取。

Multiscale Road Extraction in Remote Sensing Images.

机构信息

School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), No. 30 Xueyuan Road, Haidian District, Beijing 100083, China.

Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing, China.

出版信息

Comput Intell Neurosci. 2019 Jul 10;2019:2373798. doi: 10.1155/2019/2373798. eCollection 2019.

Abstract

Recent advances in convolutional neural networks (CNNs) have shown impressive results in semantic segmentation. Among the successful CNN-based methods, U-Net has achieved exciting performance. In this paper, we proposed a novel network architecture based on U-Net and atrous spatial pyramid pooling (ASPP) to deal with the road extraction task in the remote sensing field. On the one hand, U-Net structure can effectively extract valuable features; on the other hand, ASPP is able to utilize multiscale context information in remote sensing images. Compared to the baseline, this proposed model has improved the pixelwise mean Intersection over Union (mIoU) of 3 points. Experimental results show that the proposed network architecture can deal with different types of road surface extraction tasks under various terrains in Yinchuan city, solve the road connectivity problem to some extent, and has certain tolerance to shadows and occlusion.

摘要

近年来卷积神经网络(CNNs)在语义分割方面取得了令人瞩目的成果。在基于 CNN 的成功方法中,U-Net 取得了令人兴奋的性能。在本文中,我们提出了一种基于 U-Net 和空洞空间金字塔池化(ASPP)的新网络架构,用于处理遥感领域的道路提取任务。一方面,U-Net 结构可以有效地提取有价值的特征;另一方面,ASPP 能够利用遥感图像中的多尺度上下文信息。与基线相比,该模型提高了像素级平均交并比(mIoU)3 个点。实验结果表明,所提出的网络架构可以处理银川市不同地形下的不同类型的路面提取任务,在一定程度上解决了道路连通性问题,并且对阴影和遮挡具有一定的容忍度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fde/6652094/17b2b8564da2/CIN2019-2373798.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验