Suppr超能文献

AGs-Unet:基于注意力门控 U 网络的高分辨率遥感图像建筑物提取模型。

AGs-Unet: Building Extraction Model for High Resolution Remote Sensing Images Based on Attention Gates U Network.

机构信息

School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China.

Hebei Key Laboratory of Earthquake Dynamics, Sanhe 065201, China.

出版信息

Sensors (Basel). 2022 Apr 11;22(8):2932. doi: 10.3390/s22082932.

Abstract

Building contour extraction from high-resolution remote sensing images is a basic task for the reasonable planning of regional construction. Recently, building segmentation methods based on the U-Net network have become popular as they largely improve the segmentation accuracy by applying 'skip connection' to combine high-level and low-level feature information more effectively. Meanwhile, researchers have demonstrated that introducing an attention mechanism into U-Net can enhance local feature expression and improve the performance of building extraction in remote sensing images. In this paper, we intend to explore the effectiveness of the primeval attention gate module and propose the novel Attention Gate Module (AG) based on adjusting the position of 'Resampler' in an attention gate to Sigmoid function for a building extraction task, and a novel Attention Gates U network (AGs-Unet) is further proposed based on AG, which can automatically learn different forms of building structures in high-resolution remote sensing images and realize efficient extraction of building contour. AGs-Unet integrates attention gates with a single U-Net network, in which a series of attention gate modules are added into the 'skip connection' for suppressing the irrelevant and noisy feature responses in the input image to highlight the dominant features of the buildings in the image. AGs-Unet improves the feature selection of the attention map to enhance the ability of feature learning, as well as paying attention to the feature information of small-scale buildings. We conducted the experiments on the WHU building dataset and the INRIA Aerial Image Labeling dataset, in which the proposed AGs-Unet model is compared with several classic models (such as FCN8s, SegNet, U-Net, and DANet) and two state-of-the-art models (such as PISANet, and ARC-Net). The extraction accuracy of each model is evaluated by using three evaluation indexes, namely, overall accuracy, precision, and intersection over union. Experimental results show that the proposed AGs-Unet model can improve the quality of building extraction from high-resolution remote sensing images effectively in terms of prediction performance and result accuracy.

摘要

从高分辨率遥感图像中提取建筑物轮廓是区域规划的基础任务。最近,基于 U-Net 网络的建筑物分割方法由于应用“跳过连接”更有效地结合高层和低层特征信息,从而大大提高了分割精度,因此变得流行起来。同时,研究人员已经证明,在 U-Net 中引入注意力机制可以增强局部特征表达,并提高遥感图像中建筑物提取的性能。在本文中,我们旨在探索原始注意力门模块的有效性,并提出一种新的注意力门模块(AG),通过调整注意力门中的“Resampler”位置到 Sigmoid 函数,用于建筑物提取任务,进一步提出了基于 AG 的新型注意力门 U 网络(AGs-Unet),它可以自动学习高分辨率遥感图像中不同形式的建筑物结构,并实现建筑物轮廓的高效提取。AGs-Unet 将注意力门与单个 U-Net 网络集成在一起,在“跳过连接”中添加了一系列注意力门模块,用于抑制输入图像中不相关和嘈杂的特征响应,突出图像中建筑物的主导特征。AGs-Unet 改进了注意力图的特征选择,增强了特征学习能力,同时关注小尺度建筑物的特征信息。我们在 WHU 建筑物数据集和 INRIA 航空图像标注数据集上进行了实验,将所提出的 AGs-Unet 模型与几个经典模型(如 FCN8s、SegNet、U-Net 和 DANet)和两个最先进的模型(如 PISANet 和 ARC-Net)进行了比较。通过使用三个评估指标,即总体精度、精度和交并比,评估了每个模型的提取精度。实验结果表明,所提出的 AGs-Unet 模型可以有效地提高高分辨率遥感图像中建筑物提取的质量,提高预测性能和结果准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1fb/9031445/4600f9aaae3f/sensors-22-02932-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验