Suppr超能文献

量化黑猩猩海马结构中的神经元:与猕猴和人类的比较。

Quantification of neurons in the hippocampal formation of chimpanzees: comparison to rhesus monkeys and humans.

机构信息

Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave, Cambridge, MA, 02138, USA.

National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20814, USA.

出版信息

Brain Struct Funct. 2020 Nov;225(8):2521-2531. doi: 10.1007/s00429-020-02139-x. Epub 2020 Sep 9.

Abstract

The hippocampal formation is important for higher brain functions such as spatial navigation and the consolidation of memory, and it contributes to abilities thought to be uniquely human, yet little is known about how the human hippocampal formation compares to that of our closest living relatives, the chimpanzees. To gain insight into the comparative organization of the hippocampal formation in catarrhine primates, we quantified neurons stereologically in its major subdivisions-the granular layer of the dentate gyrus, CA4, CA2-3, CA1, and the subiculum-in archival brain tissue from six chimpanzees ranging from 29 to 43 years of age. We also sought evidence of Aβ deposition and hyperphosphorylated tau in the hippocampus and adjacent neocortex. A 42-year-old animal had moderate cerebral Aβ-amyloid angiopathy and tauopathy, but Aβ was absent and tauopathy was minimal in the others. Quantitatively, granule cells of the dentate gyrus were most numerous, followed by CA1, subiculum, CA4, and CA2-3. In the context of prior investigations of rhesus monkeys and humans, our findings indicate that, in the hippocampal formation as a whole, the proportions of neurons in CA1 and the subiculum progressively increase, and the proportion of dentate granule cells decreases, from rhesus monkeys to chimpanzees to humans. Because CA1 and the subiculum engender key hippocampal projection pathways to the neocortex, and because the neocortex varies in volume and anatomical organization among these species, these findings suggest that differences in the proportions of neurons in hippocampal subregions of catarrhine primates may be linked to neocortical evolution.

摘要

海马体对于空间导航和记忆巩固等高级大脑功能至关重要,并且有助于被认为是人类独有的能力,但我们对人类海马体与我们最亲近的亲属——黑猩猩的海马体相比有何不同知之甚少。为了深入了解在灵长类动物中海马体的比较组织,我们在六个年龄在 29 至 43 岁的黑猩猩的存档脑组织中,通过立体学方法对其主要分区——齿状回颗粒层、CA4、CA2-3、CA1 和下托——中的神经元进行了定量。我们还寻找了海马体和相邻新皮层中 Aβ 沉积和过度磷酸化 tau 的证据。一只 42 岁的动物患有中度脑 Aβ-淀粉样血管病和 tau 病,但在其他动物中,Aβ 缺失且 tau 病很少见。定量分析表明,齿状回的颗粒细胞数量最多,其次是 CA1、下托、CA4 和 CA2-3。在恒河猴和人类的先前研究背景下,我们的发现表明,在整个海马体中,CA1 和下托中的神经元比例从恒河猴到黑猩猩再到人类逐渐增加,而齿状回颗粒细胞的比例逐渐减少。由于 CA1 和下托产生了关键的海马体投射途径到新皮层,并且由于这些物种的新皮层在体积和解剖结构上存在差异,因此这些发现表明,灵长类动物海马体各分区神经元比例的差异可能与新皮层的进化有关。

相似文献

1
Quantification of neurons in the hippocampal formation of chimpanzees: comparison to rhesus monkeys and humans.
Brain Struct Funct. 2020 Nov;225(8):2521-2531. doi: 10.1007/s00429-020-02139-x. Epub 2020 Sep 9.
2
Quantitative Assessment of Hippocampal Tau Pathology in AD and PART.
J Mol Neurosci. 2020 Nov;70(11):1808-1811. doi: 10.1007/s12031-020-01573-0. Epub 2020 May 5.
4
The time of origin of neurons in the hippocampal region of the rhesus monkey.
J Comp Neurol. 1981 Feb 10;196(1):99-128. doi: 10.1002/cne.901960109.
6
Hippocampus and dentate gyrus of the Cebus monkey: architectonic and stereological study.
J Chem Neuroanat. 2010 Oct;40(2):148-59. doi: 10.1016/j.jchemneu.2010.06.002. Epub 2010 Jun 15.
7
Parvalbumin-immunoreactive neurons in the hippocampal formation of Alzheimer's diseased brain.
Neuroscience. 1997 Oct;80(4):1113-25. doi: 10.1016/s0306-4522(97)00068-7.
8
9
Genetic ablation of tau in postnatal neurons rescues decreased adult hippocampal neurogenesis in a tauopathy model.
Neurobiol Dis. 2019 Jul;127:131-141. doi: 10.1016/j.nbd.2019.02.021. Epub 2019 Feb 26.
10
Hippocampal tau pathology is related to neuroanatomical connections: an ageing population-based study.
Brain. 2009 May;132(Pt 5):1324-34. doi: 10.1093/brain/awp059. Epub 2009 Mar 24.

引用本文的文献

1
Traces of phylogeny and ecology in hippocampal neuron numbers.
PNAS Nexus. 2025 Aug 13;4(9):pgaf261. doi: 10.1093/pnasnexus/pgaf261. eCollection 2025 Sep.
3
The memory systems of the human brain and generative artificial intelligence.
Heliyon. 2024 May 24;10(11):e31965. doi: 10.1016/j.heliyon.2024.e31965. eCollection 2024 Jun 15.
4
Cell numbers in the reflected blade of CA3 and their relation to other hippocampal principal cell populations across seven species.
Front Neuroanat. 2023 Jan 4;16:1070035. doi: 10.3389/fnana.2022.1070035. eCollection 2022.
5
Hippocampal spatial view cells for memory and navigation, and their underlying connectivity in humans.
Hippocampus. 2023 May;33(5):533-572. doi: 10.1002/hipo.23467. Epub 2022 Sep 7.
6
Hippocampal Connectivity of the Presubiculum in the Common Marmoset ().
Front Neural Circuits. 2022 Jul 4;16:863478. doi: 10.3389/fncir.2022.863478. eCollection 2022.
7
Comparative neuropathology in aging primates: A perspective.
Am J Primatol. 2021 Nov;83(11):e23299. doi: 10.1002/ajp.23299. Epub 2021 Jul 13.
8
In-vivo diffusion MRI protocol optimization for the chimpanzee brain and examination of aging effects on the primate optic nerve at 3T.
Magn Reson Imaging. 2021 Apr;77:194-203. doi: 10.1016/j.mri.2020.12.015. Epub 2020 Dec 23.

本文引用的文献

1
Primate hippocampus size and organization are predicted by sociality but not diet.
Proc Biol Sci. 2019 Nov 6;286(1914):20191712. doi: 10.1098/rspb.2019.1712. Epub 2019 Oct 30.
2
Distinct Patterns of Hippocampal and Neocortical Evolution in Primates.
Brain Behav Evol. 2019;93(4):171-181. doi: 10.1159/000500625. Epub 2019 Jul 9.
3
Astrocytic changes with aging and Alzheimer's disease-type pathology in chimpanzees.
J Comp Neurol. 2019 May 1;527(7):1179-1195. doi: 10.1002/cne.24610. Epub 2019 Jan 7.
4
Development and Evolution of Cerebral and Cerebellar Cortex.
Brain Behav Evol. 2018;91(3):158-169. doi: 10.1159/000489943. Epub 2018 Aug 10.
5
Microglia changes associated to Alzheimer's disease pathology in aged chimpanzees.
J Comp Neurol. 2018 Dec 15;526(18):2921-2936. doi: 10.1002/cne.24484. Epub 2018 Nov 16.
6
Aged chimpanzees exhibit pathologic hallmarks of Alzheimer's disease.
Neurobiol Aging. 2017 Nov;59:107-120. doi: 10.1016/j.neurobiolaging.2017.07.006. Epub 2017 Aug 1.
7
The Exceptional Vulnerability of Humans to Alzheimer's Disease.
Trends Mol Med. 2017 Jun;23(6):534-545. doi: 10.1016/j.molmed.2017.04.001. Epub 2017 May 5.
8
Memory: Organization and Control.
Annu Rev Psychol. 2017 Jan 3;68:19-45. doi: 10.1146/annurev-psych-010416-044131. Epub 2016 Sep 28.
9
Comparative pathobiology of β-amyloid and the unique susceptibility of humans to Alzheimer's disease.
Neurobiol Aging. 2016 Aug;44:185-196. doi: 10.1016/j.neurobiolaging.2016.04.019. Epub 2016 May 2.
10
Atrophy of presubiculum and subiculum is the earliest hippocampal anatomical marker of Alzheimer's disease.
Alzheimers Dement (Amst). 2015 Mar 29;1(1):24-32. doi: 10.1016/j.dadm.2014.12.001. eCollection 2015 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验