Maliković Jovana, Amrein Irmgard, Vinciguerra Lorenzo, Lalošević Dušan, Wolfer David P, Slomianka Lutz
Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland.
Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
Front Neuroanat. 2023 Jan 4;16:1070035. doi: 10.3389/fnana.2022.1070035. eCollection 2022.
The hippocampus of many mammals contains a histoarchitectural region that is not present in laboratory mice and rats-the reflected blade of the CA3 pyramidal cell layer. Pyramidal cells of the reflected blade do not extend dendrites into the hippocampal molecular layer, and recent evidence indicates that they, like the proximal CA3 pyramids in laboratory rats and mice, partially integrate functionally with the dentate circuitry in pattern separation. Quantitative assessments of phylogenetic or disease-related changes in the hippocampal structure and function treat the reflected blade heterogeneously. Depending on the ease with which it can be differentiated, it is either assigned to the dentate hilus or to the remainder of CA3. Here, we investigate the impact that the differential assignment of reflected blade neurons may have on the outcomes of quantitative comparisons. We find it to be massive. If reflected blade neurons are treated as a separate entity or pooled with dentate hilar cells, the quantitative makeup of hippocampal cell populations can differentiate between species in a taxonomically sensible way. Assigning reflected blade neurons to CA3 greatly diminishes the differentiating power of all hippocampal principal cell populations, which may point towards a quantitative hippocampal archetype. A heterogeneous assignment results in a differentiation pattern with little taxonomic semblance. The outcomes point towards the reflected blade as either a major potential player in hippocampal functional and structural differentiation or a region that may have cloaked that hippocampi are more similarly organized across species than generally believed.
许多哺乳动物的海马体包含一个组织架构区域,而实验室小鼠和大鼠中不存在这个区域——CA3锥体细胞层的折返叶片。折返叶片的锥体细胞不会将树突延伸到海马分子层,最近的证据表明,它们与实验室大鼠和小鼠中的近端CA3锥体一样,在模式分离中与齿状回路部分地在功能上整合。对海马体结构和功能的系统发育或疾病相关变化的定量评估对折返叶片的处理方式并不一致。根据其可区分的难易程度,它要么被归为齿状回门,要么被归为CA3的其余部分。在这里,我们研究折返叶片神经元的不同归类可能对定量比较结果产生的影响。我们发现这种影响很大。如果将折返叶片神经元视为一个单独的实体或与齿状回门细胞合并,海马体细胞群体的定量组成可以以一种符合分类学的合理方式区分不同物种。将折返叶片神经元归为CA3会大大降低所有海马体主要细胞群体的区分能力,这可能指向一种定量的海马体原型。非一致的归类会导致一种几乎没有分类学相似性的分化模式。这些结果表明,折返叶片要么是海马体功能和结构分化中的一个主要潜在因素,要么是一个可能掩盖了不同物种海马体组织比一般认为的更相似的区域。