Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, Ohio, 43210, USA.
Campus Chemical Instrument Center, The Ohio State University, 151 W. Woodruff Ave, Columbus, Ohio, 43210, USA.
Angew Chem Int Ed Engl. 2021 Jan 4;60(1):148-152. doi: 10.1002/anie.202007205. Epub 2020 Oct 28.
The quantitative and comprehensive description of the internal dynamics of proteins is critical for understanding their function. Nanoparticle-assisted N NMR spin relaxation spectroscopy is a new method for the observation of picosecond to microsecond dynamics of proteins when transiently interacting with the surface of the nanoparticles (NPs). The method is applied here to the protein ubiquitin in the presence of anionic and cationic silica NPs (SNPs) of different sizes. The backbone dynamics profiles are reproducible and strikingly similar to each other, indicating that specific protein-SNP interactions are unimportant. The dynamics profiles closely match the sub-nanosecond dynamics S values observed by model-free analysis of standard N relaxation of ubiquitin in free solution, indicating that the bulk of the ubiquitin backbone dynamics in solution is confined to sub-nanosecond timescales and, hence, it is dynamically more restrained than previous NMR studies have suggested.
蛋白质内部动力学的定量和全面描述对于理解其功能至关重要。纳米粒子辅助的 N 核磁共振自旋弛豫光谱学是一种新的方法,可用于观察蛋白质与纳米粒子(NPs)表面瞬时相互作用时的皮秒到微秒动力学。该方法应用于带负电荷和带正电荷的不同大小硅胶 NPs(SNP)存在时的蛋白质泛素。骨架动力学图谱具有可重复性,彼此之间非常相似,表明特定的蛋白质-SNP 相互作用并不重要。动力学图谱与无模型分析标准泛素在游离溶液中的 N 弛豫所观察到的亚纳秒动力学 S 值非常吻合,表明溶液中泛素骨架动力学的大部分被限制在亚纳秒时间范围内,因此,它比以前的 NMR 研究所表明的更受约束。