ETH Zürich, Physical Chemistry, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland.
J Am Chem Soc. 2010 Nov 17;132(45):15957-67. doi: 10.1021/ja100726a. Epub 2010 Oct 26.
Characterization of protein dynamics by solid-state NMR spectroscopy requires robust and accurate measurement protocols, which are not yet fully developed. In this study, we investigate the backbone dynamics of microcrystalline ubiquitin using different approaches. A rotational-echo double-resonance type (REDOR-type) methodology allows one to accurately measure (1)H-(15)N order parameters in highly deuterated samples. We show that the systematic errors in the REDOR experiment are as low as 1% or even less, giving access to accurate data for the amplitudes of backbone mobility. Combining such dipolar-coupling-derived order parameters with autocorrelated and cross-correlated (15)N relaxation rates, we are able to quantitate amplitudes and correlation times of backbone dynamics on picosecond and nanosecond time scales in a residue-resolved manner. While the mobility on picosecond time scales appears to have rather uniform amplitude throughout the protein, we unambiguously identify and quantitate nanosecond mobility with order parameters S(2) as low as 0.8 in some regions of the protein, where nanosecond dynamics has also been revealed in solution state. The methodology used here, a combination of accurate dipolar-coupling measurements and different relaxation parameters, yields details about dynamics on different time scales and can be applied to solid protein samples such as amyloid fibrils or membrane proteins.
通过固态 NMR 光谱学对蛋白质动力学进行特征描述需要稳健且准确的测量方案,但这些方案尚未完全开发。在本研究中,我们使用不同的方法研究了微晶泛素的骨架动力学。一种旋转回波双共振型(REDOR 型)方法可用于准确测量高度氘代样品中的(1)H-(15)N 序参数。我们表明,REDOR 实验中的系统误差低至 1%甚至更低,可获得有关骨架流动性幅度的准确数据。结合这些偶极耦合衍生的序参数与自相关和交叉相关(15)N 弛豫率,我们能够以残基分辨的方式定量测定皮秒和纳秒时间尺度上的骨架动力学幅度和相关时间。虽然在皮秒时间尺度上的流动性在整个蛋白质中似乎具有相当均匀的幅度,但我们可以明确识别和定量测定蛋白质某些区域中纳秒流动性,这些区域中的蛋白质中的纳秒动力学也已在溶液状态下得到揭示,其序参数 S(2)低至 0.8。这里使用的方法,即准确的偶极耦合测量和不同弛豫参数的组合,可提供有关不同时间尺度上动力学的详细信息,并可应用于固态蛋白质样品,如淀粉样纤维或膜蛋白。