Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK.
Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305-5101, USA.
Am J Hum Genet. 2020 Oct 1;107(4):670-682. doi: 10.1016/j.ajhg.2020.08.016. Epub 2020 Sep 9.
Exome sequencing in diabetes presents a diagnostic challenge because depending on frequency, functional impact, and genomic and environmental contexts, HNF1A variants can cause maturity-onset diabetes of the young (MODY), increase type 2 diabetes risk, or be benign. A correct diagnosis matters as it informs on treatment, progression, and family risk. We describe a multi-dimensional functional dataset of 73 HNF1A missense variants identified in exomes of 12,940 individuals. Our aim was to develop an analytical framework for stratifying variants along the HNF1A phenotypic continuum to facilitate diagnostic interpretation. HNF1A variant function was determined by four different molecular assays. Structure of the multi-dimensional dataset was explored using principal component analysis, k-means, and hierarchical clustering. Weights for tissue-specific isoform expression and functional domain were integrated. Functionally annotated variant subgroups were used to re-evaluate genetic diagnoses in national MODY diagnostic registries. HNF1A variants demonstrated a range of behaviors across the assays. The structure of the multi-parametric data was shaped primarily by transactivation. Using unsupervised learning methods, we obtained high-resolution functional clusters of the variants that separated known causal MODY variants from benign and type 2 diabetes risk variants and led to reclassification of 4% and 9% of HNF1A variants identified in the UK and Norway MODY diagnostic registries, respectively. Our proof-of-principle analyses facilitated informative stratification of HNF1A variants along the continuum, allowing improved evaluation of clinical significance, management, and precision medicine in diabetes clinics. Transcriptional activity appears a superior readout supporting pursuit of transactivation-centric experimental designs for high-throughput functional screens.
外显子组测序在糖尿病中的诊断具有挑战性,因为根据频率、功能影响以及基因组和环境背景,HNF1A 变体可导致青少年发病的成年型糖尿病(MODY)、增加 2 型糖尿病风险或呈良性。正确的诊断很重要,因为它可以告知治疗、进展和家族风险。我们描述了一个多维功能数据集,其中包含在 12940 个人的外显子组中鉴定的 73 个 HNF1A 错义变体。我们的目的是开发一个分析框架,沿 HNF1A 表型连续统对变体进行分层,以促进诊断解释。通过四种不同的分子测定法确定 HNF1A 变体的功能。使用主成分分析、k-均值和层次聚类探索多维数据集的结构。整合了组织特异性同工型表达和功能域的权重。功能注释的变体亚组用于重新评估国家 MODY 诊断登记处的遗传诊断。HNF1A 变体在各种测定中表现出不同的行为。多参数数据的结构主要由反式激活决定。使用无监督学习方法,我们获得了变体的高分辨率功能聚类,这些聚类将已知的因果 MODY 变体与良性和 2 型糖尿病风险变体区分开来,并导致英国和挪威 MODY 诊断登记处分别有 4%和 9%的 HNF1A 变体重新分类。我们的原理验证分析促进了 HNF1A 变体沿着连续统的信息分层,从而可以改善糖尿病临床的临床意义、管理和精准医学评估。转录活性似乎是一个更好的读出,支持追求以反式激活为中心的实验设计,用于高通量功能筛选。