Suppr超能文献

塔宾曲霉 EMU 中 seb1 的 CRISPR-Cas9 介导敲除以提高其纤维素酶产量。

CRISPR-Cas9-mediated seb1 disruption in Talaromyces pinophilus EMU for its enhanced cellulase production.

机构信息

School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore.

School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore.

出版信息

Enzyme Microb Technol. 2020 Oct;140:109646. doi: 10.1016/j.enzmictec.2020.109646. Epub 2020 Aug 9.

Abstract

Filamentous fungi are working horses for industrial enzyme production. Combinatory approaches, such as random mutagenesis and rational genetic engineering, were adopted to improve their enzyme productivity. The filamentous fungus Talaromyces pinophilus EMU is a hyper cellulase-producing filamentous fungus obtained through random mutagenesis. This study further enhanced its cellulase production through the disruption of seb1 gene, which encodes Seb1, a transcription factor that binds to the stress response element (STRE) and regulates a variety of cellular processes. Gene seb1 was cloned from strain T. pinophilus EMU and disrupted using CRISPR-Cas9 technology. The seb1-disruptants (TpΔseb1 strains) showed distinct morphology from its parent strain. They presented a hyphal branching phenotype with decreased transcription levels of rhoA and ras1 genes involved in hyphal branching. Furthermore, TpΔseb1 strains displayed lower cell biomass, higher specific protein content, and 20%-40% enhancement in filter paper cellulase (FPase) activity, however, insignificant changes in the transcription levels of cbh1 and bgl1 genes involved in cellulase production. Through this study, we confirmed that seb1 gene disruption in T. pinophilus EMU caused more hyphal branching, reduced cell growth, increased protein secretion, and enhanced cellulase production. In addition, we successfully established the CRISPR-Cas9 genome-editing platform in T. pinophilus EMU.

摘要

丝状真菌是工业酶生产的主力军。采用组合方法,如随机诱变和理性遗传工程,来提高它们的酶产率。里氏木霉 EMU 是一种通过随机诱变获得的高产纤维素酶丝状真菌。本研究通过破坏 seb1 基因进一步提高了其纤维素酶的产量,seb1 基因编码 Seb1,它是一种转录因子,与应激反应元件(STRE)结合,调节多种细胞过程。seb1 基因从里氏木霉 EMU 菌株中克隆,并使用 CRISPR-Cas9 技术进行破坏。seb1 缺陷型(TpΔseb1 菌株)与亲本菌株表现出明显不同的形态。它们表现出菌丝分支表型,与菌丝分支相关的 rhoA 和 ras1 基因的转录水平降低。此外,TpΔseb1 菌株的细胞生物量较低,特定蛋白含量较高,滤纸纤维素酶(FPase)活性提高 20%-40%,但参与纤维素酶生产的 cbh1 和 bgl1 基因的转录水平没有显著变化。通过这项研究,我们证实了里氏木霉 EMU 中 seb1 基因的破坏导致更多的菌丝分支,减少细胞生长,增加蛋白质分泌,并增强纤维素酶的产生。此外,我们成功地在里氏木霉 EMU 中建立了 CRISPR-Cas9 基因组编辑平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验