Suppr超能文献

高度多孔的乌贼骨的机械设计:为乌贼设计的生物陶瓷硬浮力舱。

Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish.

机构信息

Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060.

Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060

出版信息

Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23450-23459. doi: 10.1073/pnas.2009531117. Epub 2020 Sep 10.

Abstract

Cuttlefish, a unique group of marine mollusks, produces an internal biomineralized shell, known as cuttlebone, which is an ultra-lightweight cellular structure (porosity, ∼93 vol%) used as the animal's hard buoyancy tank. Although cuttlebone is primarily composed of a brittle mineral, aragonite, the structure is highly damage tolerant and can withstand water pressure of about 20 atmospheres (atm) for the species Currently, our knowledge on the structural origins for cuttlebone's remarkable mechanical performance is limited. Combining quantitative three-dimensional (3D) structural characterization, four-dimensional (4D) mechanical analysis, digital image correlation, and parametric simulations, here we reveal that the characteristic chambered "wall-septa" microstructure of cuttlebone, drastically distinct from other natural or engineering cellular solids, allows for simultaneous high specific stiffness (8.4 MN⋅m/kg) and energy absorption (4.4 kJ/kg) upon loading. We demonstrate that the vertical walls in the chambered cuttlebone microstructure have evolved an optimal waviness gradient, which leads to compression-dominant deformation and asymmetric wall fracture, accomplishing both high stiffness and high energy absorption. Moreover, the distribution of walls is found to reduce stress concentrations within the horizontal septa, facilitating a larger chamber crushing stress and a more significant densification. The design strategies revealed here can provide important lessons for the development of low-density, stiff, and damage-tolerant cellular ceramics.

摘要

乌贼,一种独特的海洋软体动物,其内部会产生一种生物矿化的壳,即海螵蛸,这是一种超轻的多孔蜂窝状结构(孔隙率约为 93%),被用作动物的硬浮力舱。尽管海螵蛸主要由易碎的矿物文石组成,但该结构具有很高的耐损伤能力,可承受约 20 个大气压的水压(atm)。目前,我们对于海螵蛸卓越的机械性能的结构起源的了解还很有限。通过结合定量的三维(3D)结构特征描述、四维(4D)力学分析、数字图像相关和参数模拟,我们揭示出海螵蛸特有的隔室“壁-隔板”微观结构与其他天然或工程蜂窝结构有很大的不同,使其在加载时能够同时具有高比刚度(8.4 MN·m/kg)和能量吸收(4.4 kJ/kg)。我们证明了隔室状海螵蛸微结构中的垂直壁已经进化出了最优的波浪形梯度,这导致了以压缩为主的变形和不对称的壁断裂,实现了高刚度和高能量吸收。此外,发现壁的分布减少了水平隔板内的应力集中,有利于更大的隔室压碎应力和更显著的致密化。这里揭示的设计策略可为开发低密度、高刚度和耐损伤的蜂窝陶瓷提供重要的启示。

相似文献

3
Mechanically Efficient Cellular Materials Inspired by Cuttlebone.受墨鱼骨启发的机械高效细胞材料。
Adv Mater. 2021 Apr;33(15):e2007348. doi: 10.1002/adma.202007348. Epub 2021 Mar 6.
7
Three-Dimensional Printing of Cuttlebone-Inspired Porous Ceramic Materials.受乌贼骨启发的多孔陶瓷材料的三维打印
ACS Appl Mater Interfaces. 2024 Aug 7;16(31):41202-41210. doi: 10.1021/acsami.4c10162. Epub 2024 Jul 26.

引用本文的文献

3
Bio-Informed Porous Mineral-Based Composites.生物信息学多孔矿物基复合材料
Small. 2025 Feb;21(7):e2401052. doi: 10.1002/smll.202401052. Epub 2024 Sep 2.

本文引用的文献

1
Cuttlefish use stereopsis to strike at prey.乌贼利用立体视觉来攻击猎物。
Sci Adv. 2020 Jan 8;6(2):eaay6036. doi: 10.1126/sciadv.aay6036. eCollection 2020 Jan.
2
ilastik: interactive machine learning for (bio)image analysis.ilastik:用于(生物)图像处理的交互式机器学习。
Nat Methods. 2019 Dec;16(12):1226-1232. doi: 10.1038/s41592-019-0582-9. Epub 2019 Sep 30.
3
Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon.轻质、耐缺陷且超坚固的纳米结构碳。
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6665-6672. doi: 10.1073/pnas.1817309116. Epub 2019 Mar 18.
4
Twisting cracks in Bouligand structures.扭曲折皱的博里冈结构。
J Mech Behav Biomed Mater. 2017 Dec;76:38-57. doi: 10.1016/j.jmbbm.2017.06.010. Epub 2017 Jun 10.
9
TomoPy: a framework for the analysis of synchrotron tomographic data.TomoPy:一种用于分析同步加速器断层扫描数据的框架。
J Synchrotron Radiat. 2014 Sep;21(Pt 5):1188-93. doi: 10.1107/S1600577514013939. Epub 2014 Aug 1.
10
Ultralight, ultrastiff mechanical metamaterials.超轻、超硬的力学超材料。
Science. 2014 Jun 20;344(6190):1373-7. doi: 10.1126/science.1252291.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验