Suppr超能文献

具有可调孔径和壁厚的三维大孔/介孔硅锂离子电池阳极的合理设计与力学理解

Rational Design and Mechanical Understanding of Three-Dimensional Macro-/Mesoporous Silicon Lithium-Ion Battery Anodes with a Tunable Pore Size and Wall Thickness.

作者信息

Zuo Xiuxia, Wen Yi, Qiu Yike, Cheng Ya-Jun, Yin Shanshan, Ji Qing, You Zhong, Zhu Jin, Müller-Buschbaum Peter, Ma Lifeng, Bruce Peter G, Xia Yonggao

机构信息

Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo 315201, Zhejiang Province, P.R. China.

National Demonstration Center for Experimental Mechanics Education, School of Aerospace, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an 710049, Shaanxi Province, P.R. China.

出版信息

ACS Appl Mater Interfaces. 2020 Sep 30;12(39):43785-43797. doi: 10.1021/acsami.0c12747. Epub 2020 Sep 22.

Abstract

Silicon is regarded as one of the most promising next generation lithium-ion battery anodes due to its exceptional theoretical capacity, appropriate voltage profile, and vast abundance. Nevertheless, huge volume expansion and drastic stress generated upon lithiation cause poor cyclic stability. It has been one of the central issues to improve cyclic performance of silicon-based lithium-ion battery anodes. Constructing hierarchical macro-/mesoporous silicon with a tunable pore size and wall thickness is developed to tackle this issue. Rational structure design, controllable synthesis, and theoretical mechanical simulation are combined together to reveal fundamental mechanisms responsible for an improved cyclic performance. A self-templating strategy is applied using Stöber silica particles as a templating agent and precursor coupled with a magnesiothermic reduction process. Systematic variation of the magnesiothermic reduction time allows good control over the structures of the porous silicon. Finite element mechanical simulations on the porous silicon show that an increased pore size and a reduced wall thickness generate less mechanical stress in average along with an extended lithiation state. Besides the mechanical stress, the evolution of strain and displacement of the porous silicon is also elaborated with the finite element simulation.

摘要

硅因其卓越的理论容量、合适的电压分布以及丰富的储量,被视为最具潜力的下一代锂离子电池负极材料之一。然而,锂化过程中产生的巨大体积膨胀和剧烈应力导致其循环稳定性较差。提高硅基锂离子电池负极的循环性能一直是核心问题之一。为解决这一问题,人们开发了具有可调孔径和壁厚的分级宏观/介观多孔硅。通过合理的结构设计、可控的合成以及理论力学模拟相结合,揭示了循环性能改善的基本机制。采用以Stöber二氧化硅颗粒为模板剂和前驱体,并结合镁热还原过程的自模板策略。通过系统改变镁热还原时间,可以很好地控制多孔硅的结构。对多孔硅的有限元力学模拟表明,随着锂化状态的延长,孔径增大和壁厚减小平均产生的机械应力较小。除了机械应力外,还通过有限元模拟阐述了多孔硅的应变和位移演变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验