Suppr超能文献

用于高能锂离子电池的合金化阳极致密化:关于颗粒间与颗粒内孔隙率的批判性观点

Densification of Alloying Anodes for High Energy Lithium-Ion Batteries: Critical Perspective on Inter- Versus Intra-Particle Porosity.

作者信息

Luo Yiteng, Chen Yungui, Koratkar Nikhil, Liu Wei

机构信息

Institute of New Energy and Low-Carbon Technology (INELT), College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, China.

Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.

出版信息

Adv Sci (Weinh). 2024 Sep;11(34):e2403530. doi: 10.1002/advs.202403530. Epub 2024 Jul 8.

Abstract

High Li-storage-capacity particles such as alloying-based anodes (Si, Sn, Ge, etc.) are core components for next-generation Li-ion batteries (LIBs) but are crippled by their intrinsic volume expansion issues. While pore pre-plantation represents a mainstream solution, seldom do this strategy fully satisfy the requirements in practical LIBs. One prominent issue is that porous particles reduce electrode density and negate volumetric performance (Wh L) despite aggressive electrode densification strategies. Moreover, the additional liquid electrolyte dosage resulting from porosity increase is rarely noticed, which has a significant negative impact on cell gravimetric energy density (Wh kg). Here, the concept of judicious porosity control is introduced to recalibrate existing particle design principles in order to concurrently boost gravimetric and volumetric performance, while also maintaining the battery's cycle life. The critical is emphasized but often neglected role that intraparticle pores play in dictating battery performance, and also highlight the superiority of closed pores over the open pores that are more commonly referred to in the literature. While the analysis and case studies focus on silicon-carbon composites, the overall conclusions apply to the broad class of alloying anode chemistries.

摘要

高锂存储容量的颗粒,如基于合金的负极材料(硅、锡、锗等),是下一代锂离子电池(LIB)的核心组件,但因其固有的体积膨胀问题而受到限制。虽然孔隙预植入是一种主流解决方案,但这种策略很少能完全满足实际锂离子电池的要求。一个突出的问题是,尽管采用了激进的电极致密化策略,但多孔颗粒会降低电极密度并削弱体积性能(瓦/升)。此外,孔隙率增加导致的额外液体电解质用量很少被注意到,这对电池的重量能量密度(瓦/千克)有显著的负面影响。在此,引入了明智的孔隙率控制概念,以重新校准现有的颗粒设计原则,从而在提高重量和体积性能的同时,还能保持电池的循环寿命。强调了颗粒内孔隙在决定电池性能方面的关键但常被忽视的作用,同时也突出了闭孔相对于文献中更常提及的开孔的优越性。虽然分析和案例研究聚焦于硅碳复合材料,但总体结论适用于广泛的合金负极化学体系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cb/11425885/04e149a50ea2/ADVS-11-2403530-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验