Suppr超能文献

扫视瞬变的时空内容。

Spatiotemporal Content of Saccade Transients.

机构信息

Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA.

Department of Brain and Cognitive Sciences, University of Rochester, Meliora Hall, Rochester, NY 14627, USA; Center for Visual Science, University of Rochester, Meliora Hall, Rochester, NY 14627, USA.

出版信息

Curr Biol. 2020 Oct 19;30(20):3999-4008.e2. doi: 10.1016/j.cub.2020.07.085. Epub 2020 Sep 10.

Abstract

Humans use rapid gaze shifts, known as saccades, to explore visual scenes. These movements yield abrupt luminance changes on the retina, which elicit robust neural discharges at fixation onsets. Yet little is known about the spatial content of saccade transients. Here, we show that saccades redistribute spatial information within the temporal range of retinal sensitivity following two distinct regimes: saccade modulations counterbalance (whiten) the spectral density of natural scenes at low spatial frequencies and follow the external power distribution at higher frequencies. This redistribution is a consequence of saccade dynamics, particularly the speed/amplitude/duration relation known as the main sequence. It resembles the redistribution resulting from inter-saccadic eye drifts, revealing a continuum in the modulations given by different eye movements, with oculomotor transitions primarily acting by regulating the bandwidth of whitening. Our findings suggest important computational roles for saccade transients in the establishment of spatial representations and lead to testable predictions about their consequences for visual functions and encoding mechanisms.

摘要

人类利用快速眼球扫视(saccades)来探索视觉场景。这些运动在视网膜上产生急剧的亮度变化,在注视开始时引发强烈的神经放电。然而,对于扫视瞬变的空间内容知之甚少。在这里,我们表明扫视在视网膜敏感度的时间范围内以两种不同的方式重新分配空间信息:扫视调制抵消(白化)低空间频率下自然场景的光谱密度,并遵循较高频率下的外部功率分布。这种重新分配是扫视动力学的结果,特别是称为主序列的速度/幅度/持续时间关系。它类似于由眼跳间眼球漂移引起的重新分配,揭示了不同眼球运动给出的调制之间的连续体,眼球运动的转变主要通过调节白化的带宽来发挥作用。我们的发现表明扫视瞬变在建立空间表示方面具有重要的计算作用,并对它们对视功能和编码机制的影响提出了可测试的预测。

相似文献

1
Spatiotemporal Content of Saccade Transients.
Curr Biol. 2020 Oct 19;30(20):3999-4008.e2. doi: 10.1016/j.cub.2020.07.085. Epub 2020 Sep 10.
2
Consequences of the Oculomotor Cycle for the Dynamics of Perception.
Curr Biol. 2017 May 8;27(9):1268-1277. doi: 10.1016/j.cub.2017.03.034. Epub 2017 Apr 20.
3
Are the visual transients from microsaccades helpful? Measuring the influences of small saccades on contrast sensitivity.
Vision Res. 2016 Jan;118:60-9. doi: 10.1016/j.visres.2015.01.003. Epub 2015 Feb 14.
4
Control and Functions of Fixational Eye Movements.
Annu Rev Vis Sci. 2015 Nov;1:499-518. doi: 10.1146/annurev-vision-082114-035742. Epub 2015 Oct 14.
5
Temporal encoding of spatial information during active visual fixation.
Curr Biol. 2012 Mar 20;22(6):510-4. doi: 10.1016/j.cub.2012.01.050. Epub 2012 Feb 16.
10
Shortening and prolongation of saccade latencies following microsaccades.
Exp Brain Res. 2006 Mar;169(3):369-76. doi: 10.1007/s00221-005-0148-1. Epub 2005 Nov 23.

引用本文的文献

1
Ocular drift shakes the stationary view on pattern vision.
J Vis. 2025 Jul 1;25(8):17. doi: 10.1167/jov.25.8.17.
2
Lawful kinematics link eye movements to the limits of high-speed perception.
Nat Commun. 2025 May 8;16(1):3962. doi: 10.1038/s41467-025-58659-9.
3
The visual system does not operate like a camera.
J Vis. 2025 Mar 3;25(3):2. doi: 10.1167/jov.25.3.2.
4
Building egocentric models of local space from retinal input.
Curr Biol. 2024 Dec 2;34(23):R1185-R1202. doi: 10.1016/j.cub.2024.10.057.
7
8
Consequences of eye movements for spatial selectivity.
Curr Biol. 2024 Jul 22;34(14):3265-3272.e4. doi: 10.1016/j.cub.2024.06.016. Epub 2024 Jul 8.
9
A pupillary contrast response in mice and humans: Neural mechanisms and visual functions.
Neuron. 2024 Jul 17;112(14):2404-2422.e9. doi: 10.1016/j.neuron.2024.04.012. Epub 2024 May 1.
10
Blink and you see it.
Proc Natl Acad Sci U S A. 2024 Apr 16;121(16):e2404021121. doi: 10.1073/pnas.2404021121. Epub 2024 Apr 5.

本文引用的文献

2
Finely tuned eye movements enhance visual acuity.
Nat Commun. 2020 Feb 7;11(1):795. doi: 10.1038/s41467-020-14616-2.
3
Dynamic Modulation of Cortical Excitability during Visual Active Sensing.
Cell Rep. 2019 Jun 18;27(12):3447-3459.e3. doi: 10.1016/j.celrep.2019.05.072.
5
Vision During Saccadic Eye Movements.
Annu Rev Vis Sci. 2018 Sep 15;4:193-213. doi: 10.1146/annurev-vision-091517-034317.
7
Heading representations in primates are compressed by saccades.
Nat Commun. 2017 Oct 13;8(1):920. doi: 10.1038/s41467-017-01021-5.
8
Saccadic suppression during voluntary versus reactive saccades.
J Vis. 2017 Jul 1;17(8):8. doi: 10.1167/17.8.8.
9
Corollary Discharge and Oculomotor Proprioception: Cortical Mechanisms for Spatially Accurate Vision.
Annu Rev Vis Sci. 2016 Oct 14;2:61-84. doi: 10.1146/annurev-vision-082114-035407. Epub 2016 Aug 19.
10
Consequences of the Oculomotor Cycle for the Dynamics of Perception.
Curr Biol. 2017 May 8;27(9):1268-1277. doi: 10.1016/j.cub.2017.03.034. Epub 2017 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验