Suppr超能文献

小鼠和人类的瞳孔对比反应:神经机制与视觉功能

A pupillary contrast response in mice and humans: Neural mechanisms and visual functions.

作者信息

Fitzpatrick Michael J, Krizan Jenna, Hsiang Jen-Chun, Shen Ning, Kerschensteiner Daniel

机构信息

Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.

Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.

出版信息

Neuron. 2024 Jul 17;112(14):2404-2422.e9. doi: 10.1016/j.neuron.2024.04.012. Epub 2024 May 1.

Abstract

In the pupillary light response (PLR), increases in ambient light constrict the pupil to dampen increases in retinal illuminance. Here, we report that the pupillary reflex arc implements a second input-output transformation; it senses temporal contrast to enhance spatial contrast in the retinal image and increase visual acuity. The pupillary contrast response (PCoR) is driven by rod photoreceptors via type 6 bipolar cells and M1 ganglion cells. Temporal contrast is transformed into sustained pupil constriction by the M1's conversion of excitatory input into spike output. Computational modeling explains how the PCoR shapes retinal images. Pupil constriction improves acuity in gaze stabilization and predation in mice. Humans exhibit a PCoR with similar tuning properties to mice, which interacts with eye movements to optimize the statistics of the visual input for retinal encoding. Thus, we uncover a conserved component of active vision, its cell-type-specific pathway, computational mechanisms, and optical and behavioral significance.

摘要

在瞳孔光反射(PLR)中,环境光增加会使瞳孔收缩,以抑制视网膜照度的增加。在此,我们报告瞳孔反射弧实现了第二种输入-输出转换;它感知时间对比度,以增强视网膜图像中的空间对比度并提高视敏度。瞳孔对比度反应(PCoR)由视杆光感受器通过6型双极细胞和M1神经节细胞驱动。时间对比度通过M1将兴奋性输入转换为动作电位输出而转化为持续的瞳孔收缩。计算模型解释了PCoR如何塑造视网膜图像。瞳孔收缩可提高小鼠注视稳定和捕食时的视敏度。人类表现出与小鼠具有相似调谐特性的PCoR,它与眼球运动相互作用,以优化用于视网膜编码的视觉输入统计信息。因此,我们揭示了主动视觉的一个保守组成部分、其细胞类型特异性途径、计算机制以及光学和行为意义。

相似文献

引用本文的文献

本文引用的文献

2
8
Feature Detection by Retinal Ganglion Cells.视网膜神经节细胞的特征检测。
Annu Rev Vis Sci. 2022 Sep 15;8:135-169. doi: 10.1146/annurev-vision-100419-112009. Epub 2022 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验