Suppr超能文献

新型和传统胚胎参数作为输入数据用于人工神经网络:应用于预测植入潜能的人工智能模型。

Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential.

机构信息

IVI-RMA Valencia, Valencia, Spain.

IVI-RMA Valencia, Valencia, Spain; Instituto de Investigación e Innovación en Bioingeniería, Universitat Politécnica de Valencia, Valencia, Spain.

出版信息

Fertil Steril. 2020 Dec;114(6):1232-1241. doi: 10.1016/j.fertnstert.2020.08.023. Epub 2020 Sep 8.

Abstract

OBJECTIVE

To describe novel embryo features capable of predicting implantation potential as input data for an artificial neural network (ANN) model.

DESIGN

Retrospective cohort study.

SETTING

University-affiliated private IVF center.

PATIENT(S): This study included 637 patients from the oocyte donation program who underwent single-blastocyst transfer during two consecutive years.

INTERVENTION(S): None.

MAIN OUTCOME MEASURE(S): The research was divided into two phases. Phase 1 consisted of the description and analysis of the following embryo features in implanted and nonimplanted embryos: distance and speed of pronuclear migration, blastocyst expanded diameter, inner cell mass area, and trophectoderm cell cycle length. Phase 2 consisted of the development of an ANN algorithm for implantation prediction. Results were obtained for four models fed with different input data. The predictive power was measured with the use of the area under the receiver operating characteristic curve (AUC).

RESULT(S): Out of the five novel described parameters, blastocyst expanded diameter and trophectoderm cell cycle length had statistically different values in implanted and nonimplanted embryos. After the ANN models were trained and validated using fivefold cross-validation, they were capable of predicting implantation on testing data with AUCs of 0.64 for ANN1 (conventional morphokinetics), 0.73 for ANN2 (novel morphodynamics), 0.77 for ANN3 (conventional morphokinetics + novel morphodynamics), and 0.68 for ANN4 (discriminatory variables from statistical test).

CONCLUSION(S): The novel proposed embryo features affect the implantation potential, and their combination with conventional morphokinetic parameters is effective as input data for a predictive model based on artificial intelligence.

摘要

目的

描述具有预测植入潜能的新型胚胎特征,作为人工神经网络(ANN)模型的输入数据。

设计

回顾性队列研究。

地点

大学附属私立试管婴儿中心。

患者

本研究纳入了 637 名卵母细胞捐赠计划患者,他们在连续两年内进行了单次囊胚移植。

干预

无。

主要观察指标

研究分为两个阶段。第 1 阶段包括描述和分析植入胚胎和未植入胚胎的以下胚胎特征:原核迁移的距离和速度、囊胚扩张直径、内细胞团面积和滋养外胚层细胞周期长度。第 2 阶段包括开发用于植入预测的 ANN 算法。使用不同的输入数据对四个模型进行了结果分析。使用接受者操作特征曲线下的面积(AUC)来测量预测能力。

结果

在所描述的五个新参数中,囊胚扩张直径和滋养外胚层细胞周期长度在植入胚胎和未植入胚胎中的值存在统计学差异。在使用五重交叉验证对 ANN 模型进行训练和验证后,它们能够使用 AUC 为 0.64 的 ANN1(常规形态动力学)、0.73 的 ANN2(新型形态动力学)、0.77 的 ANN3(常规形态动力学+新型形态动力学)和 0.68 的 ANN4(统计检验的鉴别变量)在测试数据上预测植入。

结论

所提出的新型胚胎特征会影响植入潜能,并且将其与常规形态动力学参数相结合作为基于人工智能的预测模型的输入数据是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验