Suppr超能文献

基于不同人类细胞中的表观遗传修饰预测转录因子结合事件。

Prediction of transcription factors binding events based on epigenetic modifications in different human cells.

作者信息

Huang Yan, Zhou Dianshuang, Wang Yihan, Zhang Xingda, Su Mu, Wang Cong, Sun Zhongyi, Jiang Qinghua, Sun Baoqing, Zhang Yan

机构信息

School of Life Science & Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150001, China.

College of Bioinformatics Science & Technology, Harbin Medical University, Harbin 150081, China.

出版信息

Epigenomics. 2020 Aug;12(16):1443-1456. doi: 10.2217/epi-2019-0321. Epub 2020 Sep 14.

Abstract

We aim to predict transcription factor (TF) binding events from knowledge of gene expression and epigenetic modifications. TF-binding events based on the Encode project and The Cancer Genome Atlas data were analyzed by the random forest method. We showed the high performance of TF-binding predictive models in GM12878, HeLa, HepG2 and K562 cell lines and applied them to other cell lines and tissues. The genes bound by the top TFs ( and ) were significantly associated with cancer-related processes such as cell proliferation and DNA repair. We successfully constructed TF-binding predictive models in cell lines and applied them in tissues.

摘要

我们旨在从基因表达和表观遗传修饰的知识中预测转录因子(TF)结合事件。基于Encode项目和癌症基因组图谱数据的TF结合事件通过随机森林方法进行分析。我们展示了TF结合预测模型在GM12878、HeLa、HepG2和K562细胞系中的高性能,并将它们应用于其他细胞系和组织。顶级TF(和)结合的基因与细胞增殖和DNA修复等癌症相关过程显著相关。我们成功地在细胞系中构建了TF结合预测模型,并将它们应用于组织中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验