Suppr超能文献

一种用于心脏与冠状动脉耦合的闭环建模框架。

A Closed-Loop Modeling Framework for Cardiac-to-Coronary Coupling.

作者信息

Munneke Anneloes G, Lumens Joost, Arts Theo, Delhaas Tammo

机构信息

Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands.

出版信息

Front Physiol. 2022 Feb 28;13:830925. doi: 10.3389/fphys.2022.830925. eCollection 2022.

Abstract

The mechanisms by which cardiac mechanics effect coronary perfusion (cardiac-to-coronary coupling) remain incompletely understood. Several coronary models have been proposed to deepen our understanding of coronary hemodynamics, but possibilities for in-depth studies on cardiac-to-coronary coupling are limited as mechanical properties like myocardial stress and strain are most often neglected. To overcome this limitation, a mathematical model of coronary mechanics and hemodynamics was implemented in the previously published multi-scale CircAdapt model of the closed-loop cardiovascular system. The coronary model consisted of a relatively simple one-dimensional network of the major conduit arteries and veins as well as a lumped parameter model with three transmural layers for the microcirculation. Intramyocardial pressure was assumed to arise from transmission of ventricular cavity pressure into the myocardial wall as well as myocardial stiffness, based on global pump mechanics and local myofiber mechanics. Model-predicted waveforms of global epicardial flow velocity, as well as of intramyocardial flow and diameter were qualitatively and quantitatively compared with reported data. Versatility of the model was demonstrated in a case study of aortic valve stenosis. The reference simulation correctly described the phasic pattern of coronary flow velocity, arterial flow impediment, and intramyocardial differences in coronary flow and diameter. Predicted retrograde flow during early systole in aortic valve stenosis was in agreement with measurements obtained in patients. In conclusion, we presented a powerful multi-scale modeling framework that enables realistic simulation of coronary mechanics and hemodynamics. This modeling framework can be used as a research platform for in-depth studies of cardiac-to-coronary coupling, enabling study of the effect of abnormal myocardial tissue properties on coronary hemodynamics.

摘要

心脏力学影响冠状动脉灌注(心脏与冠状动脉的耦合)的机制仍未完全明了。已经提出了几种冠状动脉模型来深化我们对冠状动脉血流动力学的理解,但由于诸如心肌应力和应变等力学特性最常被忽视,对心脏与冠状动脉耦合进行深入研究的可能性有限。为克服这一限制,在先前发表的闭环心血管系统多尺度CircAdapt模型中实施了冠状动脉力学和血流动力学的数学模型。冠状动脉模型由一个相对简单的主要导管动脉和静脉的一维网络以及一个用于微循环的具有三个透壁层的集总参数模型组成。基于整体泵力学和局部肌纤维力学,假定心肌内压力源于心室腔压力传入心肌壁以及心肌硬度。将模型预测的整体心外膜流速波形以及心肌内流速和直径波形与已报道的数据进行了定性和定量比较。在主动脉瓣狭窄的案例研究中证明了该模型的通用性。参考模拟正确地描述了冠状动脉流速的相位模式、动脉血流阻碍以及冠状动脉血流和直径的心肌内差异。预测的主动脉瓣狭窄早期收缩期逆行血流与在患者中获得的测量结果一致。总之,我们提出了一个强大的多尺度建模框架,能够对冠状动脉力学和血流动力学进行逼真的模拟。这个建模框架可以用作深入研究心脏与冠状动脉耦合的研究平台,从而能够研究异常心肌组织特性对冠状动脉血流动力学的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc6a/8919076/b44b73ffc8cc/fphys-13-830925-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验