Feliu-Batlle V, Feliu-Talegon D, San-Millan A
Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain.
Robotics, Vision and Control Group, University of Seville, 41092 Seville, Spain.
J Adv Res. 2020 Jun 20;25:125-136. doi: 10.1016/j.jare.2020.06.008. eCollection 2020 Sep.
This paper studies the active damping of the oscillations of lightly damped linear systems whose parameters are indeterminate or may change through time. Systems with an arbitrary number of vibration modes are considered. Systems described by partial differential equations, that yield an infinite number of vibration modes, can also be included. In the case of collocated feedback, i.e. the sensor is placed at the same location of the actuator, a simple fractional order differentiation or integration of the measured signal is proposed that provides an effective control: (1) it guarantees a minimum phase margin or damping of the closed-loop system at all vibration modes, (2) this feature is robustly achieved, i.e., it is attained for very large variations or uncertainties of the oscillation frequencies of the system and (3) it is robust to spillover effects, i.e., to the unstabilizing effects of the vibration modes neglected in the controller design (especially important in infinite dimensional systems). Moreover, the sensitivity of the gain crossover frequency to such variations is assessed. Finally, these results are applied to the position control of a single link flexible robot. Simulated results are provided.
本文研究参数不确定或随时间变化的轻阻尼线性系统振荡的主动阻尼。考虑具有任意数量振动模式的系统。由偏微分方程描述的系统,其具有无限数量的振动模式,也可包括在内。在并置反馈的情况下,即传感器放置在执行器的同一位置,提出了一种对测量信号进行简单的分数阶微分或积分的方法,该方法能提供有效的控制:(1)它保证了闭环系统在所有振动模式下的最小相位裕度或阻尼;(2)这一特性能够稳健地实现,即对于系统振荡频率的非常大的变化或不确定性也能实现;(3)它对溢出效应具有鲁棒性,即对控制器设计中忽略的振动模式的不稳定效应具有鲁棒性(在无限维系统中尤为重要)。此外,还评估了增益穿越频率对这种变化的灵敏度。最后,将这些结果应用于单连杆柔性机器人的位置控制。给出了仿真结果。