Shajkofci Adrian, Liebling Michael
IEEE Trans Image Process. 2020 Apr 15. doi: 10.1109/TIP.2020.2986880.
Optical microscopy is an essential tool in biology and medicine. Imaging thin, yet non-flat objects in a single shot (without relying on more sophisticated sectioning setups) remains challenging as the shallow depth of field that comes with highresolution microscopes leads to unsharp image regions and makes depth localization and quantitative image interpretation difficult. Here, we present a method that improves the resolution of light microscopy images of such objects by locally estimating image distortion while jointly estimating object distance to the focal plane. Specifically, we estimate the parameters of a spatiallyvariant Point Spread Function (PSF) model using a Convolutional Neural Network (CNN), which does not require instrument- or object-specific calibration. Our method recovers PSF parameters from the image itself with up to a squared Pearson correlation coefficient of 0.99 in ideal conditions, while remaining robust to object rotation, illumination variations, or photon noise. When the recovered PSFs are used with a spatially-variant and regularized Richardson-Lucy (RL) deconvolution algorithm, we observed up to 2.1 dB better Signal-to-Noise Ratio (SNR) compared to other Blind Deconvolution (BD) techniques. Following microscope-specific calibration, we further demonstrate that the recovered PSF model parameters permit estimating surface depth with a precision of 2 micrometers and over an extended range when using engineered PSFs. Our method opens up multiple possibilities for enhancing images of non-flat objects with minimal need for a priori knowledge about the optical setup.
光学显微镜是生物学和医学中的重要工具。在单次拍摄中对薄而不平的物体进行成像(不依赖更复杂的切片设置)仍然具有挑战性,因为高分辨率显微镜的浅景深会导致图像区域不清晰,并使深度定位和定量图像解释变得困难。在这里,我们提出了一种方法,通过在联合估计物体到焦平面距离的同时局部估计图像失真,来提高此类物体的光学显微镜图像分辨率。具体来说,我们使用卷积神经网络(CNN)估计空间变化的点扩散函数(PSF)模型的参数,该方法不需要特定仪器或物体的校准。在理想条件下,我们的方法从图像本身恢复PSF参数,平方皮尔逊相关系数高达0.99,同时对物体旋转、光照变化或光子噪声具有鲁棒性。当将恢复的PSF与空间变化且正则化的理查森- Lucy(RL)反卷积算法一起使用时,与其他盲反卷积(BD)技术相比,我们观察到信噪比(SNR)提高了高达2.1 dB。经过特定显微镜校准后,我们进一步证明,当使用工程PSF时,恢复的PSF模型参数允许在扩展范围内以2微米的精度估计表面深度。我们的方法为增强不平物体的图像开辟了多种可能性,并且对光学设置的先验知识需求最小。