Zitnay Jared L, Jung Gang Seob, Lin Allen H, Qin Zhao, Li Yang, Yu S Michael, Buehler Markus J, Weiss Jeffrey A
Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA.
Sci Adv. 2020 Aug 28;6(35):eaba2795. doi: 10.1126/sciadv.aba2795. eCollection 2020 Aug.
Overuse injuries to dense collagenous tissues are common, but their etiology is poorly understood. The predominant hypothesis that micro-damage accumulation exceeds the rate of biological repair is missing a mechanistic explanation. Here, we used collagen hybridizing peptides to measure collagen molecular damage during tendon cyclic fatigue loading and computational simulations to identify potential explanations for our findings. Our results revealed that triple-helical collagen denaturation accumulates with increasing cycles of fatigue loading, and damage is correlated with creep strain independent of the cyclic strain rate. Finite-element simulations demonstrated that biphasic fluid flow is a possible fascicle-level mechanism to explain the rate dependence of the number of cycles and time to failure. Molecular dynamics simulations demonstrated that triple-helical unfolding is rate dependent, revealing rate-dependent mechanisms at multiple length scales in the tissue. The accumulation of collagen molecular denaturation during cyclic loading provides a long-sought "micro-damage" mechanism for the development of overuse injuries.
致密胶原组织的过度使用损伤很常见,但其病因却知之甚少。关于微损伤积累超过生物修复速率这一主要假设,缺少一个机制性的解释。在此,我们使用胶原杂交肽来测量肌腱循环疲劳加载过程中的胶原分子损伤,并通过计算模拟来确定我们研究结果的潜在解释。我们的结果表明,三螺旋胶原变性随着疲劳加载循环次数的增加而积累,并且损伤与蠕变应变相关,与循环应变率无关。有限元模拟表明,双相流体流动是一种可能的束状水平机制,可解释循环次数和失效时间的速率依赖性。分子动力学模拟表明,三螺旋展开是速率依赖性的,揭示了组织中多个长度尺度上的速率依赖性机制。循环加载过程中胶原分子变性的积累为过度使用损伤的发生提供了长期以来一直在寻找的“微损伤”机制。