Suppr超能文献

肌腱疲劳损伤进展和严重程度的多尺度机制与应变和循环有关。

Multiscale mechanisms of tendon fatigue damage progression and severity are strain and cycle dependent.

机构信息

Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.

出版信息

J Biomech. 2019 Mar 6;85:148-156. doi: 10.1016/j.jbiomech.2019.01.026. Epub 2019 Jan 19.

Abstract

Tendinopathies are common chronic injuries that occur when damage accumulation caused by sub-rupture fatigue loading outpaces repair. Studies have linked fatigue loading with various mechanical, structural, and biological changes associated with pathology. However, the multiscale progression of damage accumulation with respect to area, severity and the distinct contributions of strain level and number of cycles has not been fully elucidated. The objective of this study was to investigate multiscale mechanisms underlying fatigue damage accumulation and their effect on the cellular environment. Using an in situ model in rat tail tendon (RTT), fatigue loading was applied at various strains and cycle numbers to induce fatigue damage. Pre- and post- fatigue diagnostic mechanical testing, second harmonic generation (SHG) imaging, and transmission electron microscope (TEM) imaging were used to investigate extracellular and cellular damage modes at multiple scales. Fatigue loading at strains at or below 1.0% resulted in no significant changes in SHG damage area or severity and no changes in collagen fibril or cell morphology compared with controls. Fatigue loading at strains above 1.5% resulted in greater mechanical changes correlated with increased damage area measured by SHG and collagenous damage observed by TEM. Increased cycles at high strain further altered mechanical properties, increased structural damage severity (but not area), and altered TEM collagen rupture patterns. Cell morphology was similarly progressively affected with increased strain and cycle number. These damage mechanisms that may trigger degenerative changes characteristic of tendinopathy could be targeted as a part of prevention or therapy.

摘要

腱病是常见的慢性损伤,当亚破裂疲劳负荷引起的损伤积累超过修复能力时就会发生。研究已经将疲劳负荷与各种与病理学相关的机械、结构和生物学变化联系起来。然而,损伤积累的多尺度进展,包括面积、严重程度以及应变水平和循环次数的独特贡献,尚未得到充分阐明。本研究的目的是探讨疲劳损伤积累的多尺度机制及其对细胞环境的影响。使用大鼠尾腱(RTT)的原位模型,在不同的应变和循环次数下施加疲劳负荷以诱导疲劳损伤。在疲劳前后进行诊断性机械测试、二次谐波产生(SHG)成像和透射电子显微镜(TEM)成像,以研究多个尺度上的细胞外和细胞损伤模式。与对照组相比,在 1.0%或以下的应变下进行疲劳加载不会导致 SHG 损伤面积或严重程度的显著变化,也不会导致胶原纤维或细胞形态的变化。在 1.5%以上的应变下进行疲劳加载会导致更大的机械变化,这与通过 SHG 测量的损伤面积增加以及 TEM 观察到的胶原损伤增加有关。在高应变下增加循环次数会进一步改变机械性能、增加结构损伤严重程度(但不增加面积),并改变 TEM 胶原断裂模式。细胞形态也随着应变和循环次数的增加而逐渐受到影响。这些可能引发腱病特征性退行性变化的损伤机制,可以作为预防或治疗的一部分进行靶向治疗。

相似文献

1
Multiscale mechanisms of tendon fatigue damage progression and severity are strain and cycle dependent.
J Biomech. 2019 Mar 6;85:148-156. doi: 10.1016/j.jbiomech.2019.01.026. Epub 2019 Jan 19.
2
Tendon fatigue in response to mechanical loading.
J Musculoskelet Neuronal Interact. 2011 Jun;11(2):106-14.
4
Basic mechanisms of tendon fatigue damage.
J Shoulder Elbow Surg. 2012 Feb;21(2):158-63. doi: 10.1016/j.jse.2011.11.014.
5
6
Fatigue loading of tendon.
Int J Exp Pathol. 2013 Aug;94(4):260-70. doi: 10.1111/iep.12037.
8
Tendons exhibit greater resistance to tissue and molecular-level damage with increasing strain rate during cyclic fatigue.
Acta Biomater. 2021 Oct 15;134:435-442. doi: 10.1016/j.actbio.2021.07.045. Epub 2021 Jul 24.
9
Glycosaminoglycans modulate microscale mechanics and viscoelasticity in fatigue injured tendons.
J Biomech. 2023 May;152:111584. doi: 10.1016/j.jbiomech.2023.111584. Epub 2023 Apr 11.

引用本文的文献

1
Shear wave propagation as a noninvasive metric of loading and microdamage in tendon fascicles.
J Mech Behav Biomed Mater. 2025 Sep;169:107081. doi: 10.1016/j.jmbbm.2025.107081. Epub 2025 May 23.
2
Addressing muscle-tendon imbalances in adult male athletes with personalized exercise prescription based on tendon strain.
Eur J Appl Physiol. 2024 Nov;124(11):3201-3214. doi: 10.1007/s00421-024-05525-z. Epub 2024 Jun 6.
4
Successive tendon injury in an rat overload model induces early damage and acute healing responses.
Front Bioeng Biotechnol. 2024 Mar 7;12:1327094. doi: 10.3389/fbioe.2024.1327094. eCollection 2024.
6
An Adolescent Murine In Vivo Anterior Cruciate Ligament Overuse Injury Model.
Am J Sports Med. 2023 Jun;51(7):1721-1732. doi: 10.1177/03635465231165753. Epub 2023 Apr 24.
7
Stress deprivation of tendon explants or Tpm3.1 inhibition in tendon cells reduces F-actin to promote a tendinosis-like phenotype.
Mol Biol Cell. 2022 Dec 1;33(14):ar141. doi: 10.1091/mbc.E22-02-0067. Epub 2022 Sep 21.
9

本文引用的文献

1
Fatigue loading of tendon results in collagen kinking and denaturation but does not change local tissue mechanics.
J Biomech. 2018 Apr 11;71:251-256. doi: 10.1016/j.jbiomech.2018.02.014. Epub 2018 Feb 21.
2
Tendon basic science: Development, repair, regeneration, and healing.
J Orthop Res. 2015 Jun;33(6):780-4. doi: 10.1002/jor.22869. Epub 2015 Apr 24.
4
Tendon overload results in alterations in cell shape and increased markers of inflammation and matrix degradation.
Scand J Med Sci Sports. 2015 Aug;25(4):e381-91. doi: 10.1111/sms.12333. Epub 2014 Dec 30.
6
Tendon extracellular matrix damage detection and quantification using automated edge detection analysis.
J Biomech. 2013 Nov 15;46(16):2844-7. doi: 10.1016/j.jbiomech.2013.09.002. Epub 2013 Sep 18.
7
The Laboratory Rat: Relating Its Age With Human's.
Int J Prev Med. 2013 Jun;4(6):624-30.
10
Early response to tendon fatigue damage accumulation in a novel in vivo model.
J Biomech. 2010 Jan 19;43(2):274-9. doi: 10.1016/j.jbiomech.2009.08.039. Epub 2009 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验