Suppr超能文献

通过微观图像识别进行电流体动力学打印过程监测。

Electrohydrodynamic printing process monitoring by microscopic image identification.

作者信息

Sun Jie, Jing Linzhi, Fan Xiaotian, Gao Xueying, Liang Yung C

机构信息

Department of Industrial Design, Xi'an Jiaotong-Liverpool University, China.

Departments of Food Science and Technology Programme, and Chemistry, National University of Singapore, Singapore.

出版信息

Int J Bioprint. 2018 Dec 14;5(1):164. doi: 10.18063/ijb.v5i1.164. eCollection 2019.

Abstract

Electrohydrodynamic printing (EHDP) is able to precisely manipulate the position, size, and morphology of micro-/nano-fibers and fabricate high-resolution scaffolds using viscous biopolymer solutions. However, less attention has been paid to the influence of EHDP jet characteristics and key process parameters on deposited fiber patterns. To ensure the printing quality, it is very necessary to establish the relationship between the cone shapes and the stability of scaffold fabrication process. In this work, we used a digital microscopic imaging technique to monitor EHDP cones during printing, with subsequent image processing algorithms to extract related features, and a recognition algorithm to determine the suitability of Taylor cones for EHDP scaffold fabrication. Based on the experimental data, it has been concluded that the images of EHDP cone modes and the extracted features (centroid, jet diameter) are affected by their process parameters such as nozzle-substrate distance, the applied voltage, and stage moving speed. A convolutional neural network is then developed to classify these EHDP cone modes with the consideration of training time consumption and testing accuracy. A control algorithm will be developed to regulate the process parameters at the next stage for effective scaffold fabrication.

摘要

电流体动力学打印(EHDP)能够精确控制微/纳米纤维的位置、尺寸和形态,并使用粘性生物聚合物溶液制造高分辨率支架。然而,人们对EHDP射流特性和关键工艺参数对沉积纤维图案的影响关注较少。为确保打印质量,建立锥体形状与支架制造过程稳定性之间的关系非常必要。在这项工作中,我们使用数字显微成像技术在打印过程中监测EHDP锥体,随后使用图像处理算法提取相关特征,并使用识别算法确定泰勒锥用于EHDP支架制造的适用性。基于实验数据,得出结论:EHDP锥体模式的图像和提取的特征(质心、射流直径)受诸如喷嘴与基底距离、施加电压和平台移动速度等工艺参数的影响。然后开发了一种卷积神经网络,在考虑训练时间消耗和测试精度的情况下对这些EHDP锥体模式进行分类。下一阶段将开发一种控制算法来调节工艺参数,以实现有效的支架制造。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1b3/7481098/46db33990232/IJB-5-1-164-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验