Suppr超能文献

深度学习在基于图像的植物表型分析中提供了最先进的性能。

Deep machine learning provides state-of-the-art performance in image-based plant phenotyping.

机构信息

School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK.

School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough, LE12 5RD, UK.

出版信息

Gigascience. 2017 Oct 1;6(10):1-10. doi: 10.1093/gigascience/gix083.

Abstract

In plant phenotyping, it has become important to be able to measure many features on large image sets in order to aid genetic discovery. The size of the datasets, now often captured robotically, often precludes manual inspection, hence the motivation for finding a fully automated approach. Deep learning is an emerging field that promises unparalleled results on many data analysis problems. Building on artificial neural networks, deep approaches have many more hidden layers in the network, and hence have greater discriminative and predictive power. We demonstrate the use of such approaches as part of a plant phenotyping pipeline. We show the success offered by such techniques when applied to the challenging problem of image-based plant phenotyping and demonstrate state-of-the-art results (>97% accuracy) for root and shoot feature identification and localization. We use fully automated trait identification using deep learning to identify quantitative trait loci in root architecture datasets. The majority (12 out of 14) of manually identified quantitative trait loci were also discovered using our automated approach based on deep learning detection to locate plant features. We have shown deep learning-based phenotyping to have very good detection and localization accuracy in validation and testing image sets. We have shown that such features can be used to derive meaningful biological traits, which in turn can be used in quantitative trait loci discovery pipelines. This process can be completely automated. We predict a paradigm shift in image-based phenotyping bought about by such deep learning approaches, given sufficient training sets.

摘要

在植物表型分析中,为了辅助遗传发现,能够对大量图像集中的许多特征进行测量变得非常重要。由于数据集的规模通常很大,现在通常是通过机器人来采集,往往不允许进行手动检查,因此人们有动力去寻找一种完全自动化的方法。深度学习是一个新兴领域,在许多数据分析问题上都有望取得无与伦比的成果。基于人工神经网络,深度方法在网络中有更多的隐藏层,因此具有更强的判别和预测能力。我们展示了这些方法在植物表型分析流水线中的应用。我们展示了这些技术在基于图像的植物表型分析这一具有挑战性的问题上的成功,并为根和茎特征的识别和定位提供了最先进的结果(>97%的准确率)。我们使用完全自动化的基于深度学习的特征识别方法来识别根系结构数据集中的数量性状基因座。通过我们基于深度学习检测的自动方法来定位植物特征,发现了 14 个手动鉴定的数量性状基因座中的 12 个(12 个中的 12 个)。我们已经表明,基于深度学习的表型分析在验证和测试图像集中具有很好的检测和定位准确性。我们已经表明,这些特征可以用于提取有意义的生物学特征,进而可以用于数量性状基因座发现管道。这个过程可以完全自动化。我们预测,随着深度学习方法的出现,基于图像的表型分析将发生范式转变,只要有足够的训练集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8bc/5632296/326e857c2961/gix083fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验