Zhao Di, Feng Pei-Jian, Liu Jia-Hao, Dong Mei, Shen Xiao-Quan, Chen Ying-Xin, Shen Qun-Dong
Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
Key Laboratory of High-Performance Polymer Materials and Technology of MOE, Nanjing University, Nanjing, 210023, China.
Adv Mater. 2020 Oct;32(43):e2003800. doi: 10.1002/adma.202003800. Epub 2020 Sep 13.
The degeneration of dopaminergic neurons is a major contributor to the pathogenesis of mid-brain disorders. Clinically, cell therapeutic solutions, by increasing the neurotransmitter dopamine levels in the patients, are hindered by low efficiency and/or side effects. Here, a strategy using electromagnetized nanoparticles to modulate neural plasticity and recover degenerative dopamine neurons in vivo is reported. Remarkably, electromagnetic fields generated by the nanoparticles under ultrasound stimulation modulate intracellular calcium signaling to influence synaptic plasticity and control neural behavior. Dopaminergic neuronal functions are reversed by upregulating the expression tyrosine hydroxylase, thus resulting in ameliorating the neural behavioral disorders in zebrafish. This wireless tool can serve as a viable and safe strategy for the regenerative therapy of the neurodegenerative disorders.
多巴胺能神经元的退化是中脑疾病发病机制的主要促成因素。临床上,通过提高患者神经递质多巴胺水平的细胞治疗方案受到效率低下和/或副作用的阻碍。在此,报道了一种利用电磁纳米颗粒在体内调节神经可塑性并恢复退化的多巴胺能神经元的策略。值得注意的是,纳米颗粒在超声刺激下产生的电磁场调节细胞内钙信号,以影响突触可塑性并控制神经行为。通过上调酪氨酸羟化酶的表达来逆转多巴胺能神经元功能,从而改善斑马鱼的神经行为障碍。这种无线工具可作为神经退行性疾病再生治疗的一种可行且安全的策略。