文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米技术强化的细胞钙信号调控

Nanotechnology-Fortified Manipulation of Cell Ca Signaling.

作者信息

Zhou Yaofeng, Zhang Zherui, Zhou Chen, Ma Yuanhong, Huang Haoye, Liu Junqiu, Zhu Dingcheng

机构信息

College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education Hangzhou Normal University Hangzhou 311121 China.

School of Engineering Westlake University Shilongshan Road Hangzhou 310030 Zhejiang China.

出版信息

Small Sci. 2024 Jun 26;4(10):2400169. doi: 10.1002/smsc.202400169. eCollection 2024 Oct.


DOI:10.1002/smsc.202400169
PMID:40212247
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11935292/
Abstract

The manipulation of cytosolic Ca concentration ([Ca]) plays a crucial role in the study of Ca signaling and the therapy of its affected diseases. Nanotechnology enables the development of nanotransducers for targeted, non-invasive, highly spatiotemporal, and on-demand [Ca] regulation by responding to external energy fields to activate Ca channels, in situ deliver Ca, or release the payload of chemical modulators. As considerable strides have been made in Ca signaling-related fundamental research and applications in recent years, in this article, it is tried to present a thorough review of nanotransducer-based [Ca] manipulation, from the working principle to specific applications. Focusing on the design rationale and constructions of nanotransducers, the interactions between nanotransducers and Ca channels are highlighted, as well as the downstream effectors of Ca signaling pathways, followed by their representative biomedical applications in disease treatment and neuromodulation. Moreover, despite the enormous progress made to date, nanotransducer-regulated Ca signaling still confronts obstacles, and several scientific issues urgently need to be resolved. Thus, to provide brief and valid instructions for the development of nanotransducers for the regulation of Ca signaling, proposals on how to improve the nanotransducer-based [Ca] manipulation as well as future challenges and prospects are discussed.

摘要

细胞质钙浓度([Ca])的调控在钙信号研究及其相关疾病治疗中起着关键作用。纳米技术能够开发纳米传感器,通过响应外部能量场来激活钙通道、原位输送钙或释放化学调节剂的有效载荷,从而实现对[Ca]的靶向、非侵入性、高时空分辨率和按需调控。近年来,钙信号相关的基础研究和应用取得了长足进展,本文试图对基于纳米传感器的[Ca]调控进行全面综述,内容涵盖工作原理至具体应用。重点介绍纳米传感器的设计原理和结构,突出纳米传感器与钙通道之间的相互作用以及钙信号通路的下游效应器,随后阐述其在疾病治疗和神经调节方面的代表性生物医学应用。此外,尽管迄今已取得巨大进展,但纳米传感器调控的钙信号仍面临障碍,若干科学问题亟待解决。因此,为给用于调控钙信号的纳米传感器开发提供简要有效的指导,本文讨论了如何改进基于纳米传感器的[Ca]调控以及未来的挑战与前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/efbc1b82697c/SMSC-4-2400169-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/bea5c7718e7e/SMSC-4-2400169-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/cd9f98af1e89/SMSC-4-2400169-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/76ea78e92241/SMSC-4-2400169-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/32003c197e07/SMSC-4-2400169-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/2c92fc8ce5cb/SMSC-4-2400169-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/8483a56ed0d5/SMSC-4-2400169-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/a98915462998/SMSC-4-2400169-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/1cb9df201190/SMSC-4-2400169-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/8770e8f85d26/SMSC-4-2400169-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/c99333308840/SMSC-4-2400169-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/fa9905ccea16/SMSC-4-2400169-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/e3720db978ab/SMSC-4-2400169-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/a22abd6ce75d/SMSC-4-2400169-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/e277b6021b24/SMSC-4-2400169-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/547c98383b37/SMSC-4-2400169-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/79adb50a030b/SMSC-4-2400169-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/111ce2518835/SMSC-4-2400169-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/e6f2778c5859/SMSC-4-2400169-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/14641541ece4/SMSC-4-2400169-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/0e7178bac9f5/SMSC-4-2400169-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/efbc1b82697c/SMSC-4-2400169-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/bea5c7718e7e/SMSC-4-2400169-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/cd9f98af1e89/SMSC-4-2400169-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/76ea78e92241/SMSC-4-2400169-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/32003c197e07/SMSC-4-2400169-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/2c92fc8ce5cb/SMSC-4-2400169-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/8483a56ed0d5/SMSC-4-2400169-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/a98915462998/SMSC-4-2400169-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/1cb9df201190/SMSC-4-2400169-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/8770e8f85d26/SMSC-4-2400169-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/c99333308840/SMSC-4-2400169-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/fa9905ccea16/SMSC-4-2400169-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/e3720db978ab/SMSC-4-2400169-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/a22abd6ce75d/SMSC-4-2400169-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/e277b6021b24/SMSC-4-2400169-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/547c98383b37/SMSC-4-2400169-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/79adb50a030b/SMSC-4-2400169-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/111ce2518835/SMSC-4-2400169-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/e6f2778c5859/SMSC-4-2400169-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/14641541ece4/SMSC-4-2400169-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/0e7178bac9f5/SMSC-4-2400169-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a5/11935292/efbc1b82697c/SMSC-4-2400169-g011.jpg

相似文献

[1]
Nanotechnology-Fortified Manipulation of Cell Ca Signaling.

Small Sci. 2024-6-26

[2]
Functional nanotransducer-mediated wireless neural modulation techniques.

Phys Med Biol. 2024-7-15

[3]
Nanotransducer-Enabled Wireless Spatiotemporal Tuning of Engineered Bacteria in Bumblebee.

Small. 2023-9

[4]
Deciphering Molecular Mechanisms and Intervening in Physiological and Pathophysiological Processes of Ca Signaling Mechanisms Using Optogenetic Tools.

Cells. 2021-11-28

[5]
Nanotransducers for Wireless Neuromodulation.

Matter. 2021-5-5

[6]
Ultrasound-Induced Cascade Amplification in a Mechanoluminescent Nanotransducer for Enhanced Sono-Optogenetic Deep Brain Stimulation.

ACS Nano. 2023-12-26

[7]
Magnetic Nanotransducers in Biomedicine.

Chemistry. 2017-11-16

[8]
Engineering Cell-Surface Receptors with DNA Nanotechnology for Cell Manipulation.

Chembiochem. 2020-2-3

[9]
Store-operated Ca2+ influx causes Ca2+ release from the intracellular Ca2+ channels that is required for T cell activation.

J Biol Chem. 2008-5-2

[10]
Nanotransducer-Enabled Deep-Brain Neuromodulation with NIR-II Light.

ACS Nano. 2023-5-9

本文引用的文献

[1]
Neural modulation with photothermally active nanomaterials.

Nat Rev Bioeng. 2023-3

[2]
Photocatalytic manipulation of Ca signaling for regulating cellular and animal behaviors via MOF-enabled HO generation.

Sci Adv. 2024-4-19

[3]
Nanobubble-actuated ultrasound neuromodulation for selectively shaping behavior in mice.

Nat Commun. 2024-3-13

[4]
Modulation of Dendritic Cell Function via Nanoparticle-Induced Cytosolic Calcium Changes.

ACS Nano. 2024-3-12

[5]
Molecular Motor-Driven Light-Controlled Logic-Gated K Channel for Cancer Cell Apoptosis.

Adv Mater. 2024-5

[6]
Non-Faradaic optoelectrodes for safe electrical neuromodulation.

Nat Commun. 2024-1-9

[7]
Photo-Controlled Calcium Overload from Endogenous Sources for Tumor Therapy.

Angew Chem Int Ed Engl. 2024-2-26

[8]
Modulating cell signalling in vivo with magnetic nanotransducers.

Nat Rev Methods Primers. 2022

[9]
Bimodal modulation of angiogenesis with photoactive polymer nanoparticles.

Nanoscale. 2023-11-30

[10]
Optogenetics for light control of biological systems.

Nat Rev Methods Primers. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索