Bioengineering, Stanford University, Stanford, CA, United States of America.
BioX Institute, Stanford University, Stanford, CA, United States of America.
PLoS Comput Biol. 2020 Sep 14;16(9):e1008193. doi: 10.1371/journal.pcbi.1008193. eCollection 2020 Sep.
Segmenting cell nuclei within microscopy images is a ubiquitous task in biological research and clinical applications. Unfortunately, segmenting low-contrast overlapping objects that may be tightly packed is a major bottleneck in standard deep learning-based models. We report a Nuclear Segmentation Tool (NuSeT) based on deep learning that accurately segments nuclei across multiple types of fluorescence imaging data. Using a hybrid network consisting of U-Net and Region Proposal Networks (RPN), followed by a watershed step, we have achieved superior performance in detecting and delineating nuclear boundaries in 2D and 3D images of varying complexities. By using foreground normalization and additional training on synthetic images containing non-cellular artifacts, NuSeT improves nuclear detection and reduces false positives. NuSeT addresses common challenges in nuclear segmentation such as variability in nuclear signal and shape, limited training sample size, and sample preparation artifacts. Compared to other segmentation models, NuSeT consistently fares better in generating accurate segmentation masks and assigning boundaries for touching nuclei.
在显微镜图像中分割细胞核是生物学研究和临床应用中普遍存在的任务。不幸的是,在标准的基于深度学习的模型中,分割低对比度的重叠对象(可能紧密堆积)是一个主要的瓶颈。我们报告了一种基于深度学习的核分割工具 (NuSeT),它可以准确地分割多种类型的荧光成像数据中的细胞核。使用由 U-Net 和区域提议网络 (RPN) 组成的混合网络,然后进行分水岭步骤,我们在检测和描绘具有不同复杂程度的 2D 和 3D 图像中的核边界方面取得了卓越的性能。通过使用前景归一化和对包含非细胞伪影的合成图像进行额外训练,NuSeT 提高了核检测的准确性并减少了假阳性。NuSeT 解决了核分割中的常见挑战,例如核信号和形状的可变性、有限的训练样本大小和样本制备伪影。与其他分割模型相比,NuSeT 在生成准确的分割掩模和为接触核分配边界方面表现更好。