Suppr超能文献

谷氨酸-谷氨酰胺稳态在源自额颞叶痴呆患者 iPSC 模型的神经元和星形胶质细胞中受到干扰。

Glutamate-glutamine homeostasis is perturbed in neurons and astrocytes derived from patient iPSC models of frontotemporal dementia.

机构信息

Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.

Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg C, Denmark.

出版信息

Mol Brain. 2020 Sep 14;13(1):125. doi: 10.1186/s13041-020-00658-6.

Abstract

Frontotemporal dementia (FTD) is amongst the most prevalent early onset dementias and even though it is clinically, pathologically and genetically heterogeneous, a crucial involvement of metabolic perturbations in FTD pathology is being recognized. However, changes in metabolism at the cellular level, implicated in FTD and in neurodegeneration in general, are still poorly understood. Here we generate induced human pluripotent stem cells (hiPSCs) from patients carrying mutations in CHMP2B (FTD3) and isogenic controls generated via CRISPR/Cas9 gene editing with subsequent neuronal and glial differentiation and characterization. FTD3 neurons show a dysregulation of glutamate-glutamine related metabolic pathways mapped by C-labelling coupled to mass spectrometry. FTD3 astrocytes show increased uptake of glutamate whilst glutamate metabolism is largely maintained. Using quantitative proteomics and live-cell metabolic analyses, we elucidate molecular determinants and functional alterations of neuronal and glial energy metabolism in FTD3. Importantly, correction of the mutations rescues such pathological phenotypes. Notably, these findings implicate dysregulation of key enzymes crucial for glutamate-glutamine homeostasis in FTD3 pathogenesis which may underlie vulnerability to neurodegeneration. Neurons derived from human induced pluripotent stem cells (hiPSCs) of patients carrying mutations in CHMP2B (FTD3) display major metabolic alterations compared to CRISPR/Cas9 generated isogenic controls. Using quantitative proteomics, C-labelling coupled to mass spectrometry metabolic mapping and seahorse analyses, molecular determinants and functional alterations of neuronal and astrocytic energy metabolism in FTD3 were characterized. Our findings implicate dysregulation of glutamate-glutamine homeostasis in FTD3 pathogenesis. In addition, FTD3 neurons recapitulate glucose hypometabolism observed in FTD patient brains. The impaired mitochondria function found here is concordant with disturbed TCA cycle activity and decreased glycolysis in FTD3 neurons. FTD3 neuronal glutamine hypermetabolism is associated with up-regulation of PAG expression and, possibly, ROS production. Distinct compartments of glutamate metabolism can be suggested for the FTD3 neurons. Endogenous glutamate generated from glutamine via PAG may enter the TCA cycle via AAT (left side of neuron) while exogenous glutamate taken up from the extracellular space may be incorporated into the TCA cycle via GDH (right side of the neuron) FTD3 astrocytic glutamate uptake is upregulated whilst glutamate metabolism is largely maintained. Finally, pharmacological reversal of glutamate hypometabolism manifesting from decreased GDH expression should be explored as a novel therapeutic intervention for treating FTD3.

摘要

额颞叶痴呆(FTD)是最常见的早发性痴呆症之一,尽管它在临床上、病理上和遗传上具有异质性,但代谢紊乱在 FTD 病理中的重要作用正在被认识到。然而,与 FTD 以及一般的神经退行性变相关的细胞水平代谢变化仍知之甚少。在这里,我们从携带 CHMP2B 突变的患者(FTD3)中生成诱导多能干细胞(hiPSC),并通过 CRISPR/Cas9 基因编辑生成同源对照,随后进行神经元和神经胶质分化和表征。FTD3 神经元表现出谷氨酸-谷氨酰胺相关代谢途径的失调,这些途径通过 C 标记与质谱联用进行映射。FTD3 星形胶质细胞表现出谷氨酸摄取增加,而谷氨酸代谢基本保持不变。使用定量蛋白质组学和活细胞代谢分析,我们阐明了 FTD3 中神经元和神经胶质能量代谢的分子决定因素和功能改变。重要的是,突变的纠正挽救了这种病理表型。值得注意的是,这些发现表明,在 FTD3 发病机制中,谷氨酸-谷氨酰胺稳态的关键酶的失调可能是导致神经退行性变的易感性的基础。与 CRISPR/Cas9 生成的同源对照相比,源自携带 CHMP2B 突变的患者的诱导多能干细胞(hiPSC)衍生的神经元显示出主要的代谢改变。使用定量蛋白质组学、C 标记与质谱代谢映射和 Seahorse 分析,我们对 FTD3 中神经元和星形胶质细胞能量代谢的分子决定因素和功能改变进行了表征。我们的研究结果表明,谷氨酸-谷氨酰胺稳态的失调在 FTD3 的发病机制中起作用。此外,FTD3 神经元再现了 FTD 患者大脑中观察到的葡萄糖代谢不足。这里发现的受损线粒体功能与 TCA 循环活性紊乱和 FTD3 神经元中糖酵解减少一致。FTD3 神经元的谷氨酰胺过度代谢与 PAG 表达的上调有关,并且可能与 ROS 产生有关。FTD3 神经元的谷氨酸代谢的不同区室可以被提出。通过 PAG 从谷氨酰胺产生的内源性谷氨酸可能通过 AAT(神经元的左侧)进入 TCA 循环,而从细胞外空间摄取的外源性谷氨酸可能通过 GDH(神经元的右侧)进入 TCA 循环。FTD3 星形胶质细胞的谷氨酸摄取上调,而谷氨酸代谢基本保持不变。最后,应该探索通过降低 GDH 表达来逆转谷氨酸代谢不足的药理学逆转,作为治疗 FTD3 的一种新的治疗干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cffe/7491073/412948b04f15/13041_2020_658_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验