Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
Department of Chemistry, Princeton University, Princeton, NJ, USA.
Nat Cell Biol. 2020 Oct;22(10):1187-1196. doi: 10.1038/s41556-020-00578-6. Epub 2020 Sep 14.
Membraneless organelles or condensates form through liquid-liquid phase separation, which is thought to underlie gene transcription through condensation of the large-scale nucleolus or in smaller assemblies known as transcriptional condensates. Transcriptional condensates have been hypothesized to phase separate at particular genomic loci and locally promote the biomolecular interactions underlying gene expression. However, there have been few quantitative biophysical tests of this model in living cells, and phase separation has not yet been directly linked with dynamic transcriptional outputs. Here, we apply an optogenetic approach to show that FET-family transcriptional regulators exhibit a strong tendency to phase separate within living cells, a process that can drive localized RNA transcription. We find that TAF15 has a unique charge distribution among the FET family members that enhances its interactions with the C-terminal domain of RNA polymerase II. Nascent C-terminal domain clusters at primed genomic loci lower the energetic barrier for nucleation of TAF15 condensates, which in turn further recruit RNA polymerase II to drive transcriptional output. These results suggest that positive feedback between interacting transcriptional components drives localized phase separation to amplify gene expression.
无膜细胞器或液滴通过液-液相分离形成,人们认为这种液-液相分离是通过大核仁的凝聚或较小的转录凝聚体来实现基因转录的基础。转录凝聚体被假设在特定的基因组位置发生液-液相分离,并在局部促进基因表达的生物分子相互作用。然而,在活细胞中,很少有对这种模型的定量生物物理测试,并且液-液相分离尚未与动态转录输出直接联系起来。在这里,我们应用光遗传学方法表明 FET 家族转录调节剂在活细胞内表现出强烈的相分离倾向,这一过程可以驱动局部 RNA 转录。我们发现,TAF15 在 FET 家族成员中具有独特的电荷分布,增强了它与 RNA 聚合酶 II 的 C 末端结构域的相互作用。在起始的基因组位置上,新生的 C 末端结构域簇降低了 TAF15 凝聚体成核的能量障碍,进而进一步招募 RNA 聚合酶 II 以驱动转录输出。这些结果表明,相互作用的转录成分之间的正反馈驱动局部相分离以放大基因表达。