Suppr超能文献

液-液相分离的核 GBPL 回路控制植物的免疫。

A phase-separated nuclear GBPL circuit controls immunity in plants.

机构信息

Howard Hughes Medical Institute, New Haven, CT, USA.

Yale Systems Biology Institute, West Haven, CT, USA.

出版信息

Nature. 2021 Jun;594(7863):424-429. doi: 10.1038/s41586-021-03572-6. Epub 2021 May 26.

Abstract

Liquid-liquid phase separation (LLPS) has emerged as a central paradigm for understanding how membraneless organelles compartmentalize diverse cellular activities in eukaryotes. Here we identify a superfamily of plant guanylate-binding protein (GBP)-like GTPases (GBPLs) that assemble LLPS-driven condensates within the nucleus to protect against infection and autoimmunity. In Arabidopsis thaliana, two members of this family-GBPL1 and GBPL3-undergo phase-transition behaviour to control transcriptional responses as part of an allosteric switch that is triggered by exposure to biotic stress. GBPL1, a pseudo-GTPase, sequesters catalytically active GBPL3 under basal conditions but is displaced by GBPL3 LLPS when it enters the nucleus following immune cues to drive the formation of unique membraneless organelles termed GBPL defence-activated condensates (GDACs) that we visualized by in situ cryo-electron tomography. Within these mesoscale GDAC structures, native GBPL3 directly bound defence-gene promoters and recruited specific transcriptional coactivators of the Mediator complex and RNA polymerase II machinery to massively reprogram host gene expression for disease resistance. Together, our study identifies a GBPL circuit that reinforces the biological importance of phase-separated condensates, in this case, as indispensable players in plant defence.

摘要

液-液相分离 (LLPS) 已成为理解真核生物中无膜细胞器如何分隔各种细胞活动的核心范例。在这里,我们鉴定了一类植物鸟苷酸结合蛋白 (GBP)-样 GTPase(GBPL)超家族,它们在核内组装由 LLPS 驱动的凝聚物,以防止感染和自身免疫。在拟南芥中,这个家族的两个成员——GBPL1 和 GBPL3——经历相变行为,作为由生物胁迫引发的变构开关的一部分,控制转录反应。作为伪 GTPase,GBPL1 在基础条件下隔离催化活性的 GBPL3,但在免疫信号后进入核内时被 GBPL3 的 LLPS 取代,从而驱动独特的无膜细胞器的形成,我们称之为 GBPL 防御激活凝聚物 (GDAC),我们通过原位冷冻电子断层扫描进行可视化。在这些介观 GDAC 结构中,天然的 GBPL3 直接结合防御基因启动子,并招募 Mediator 复合物和 RNA 聚合酶 II 机器的特定转录共激活因子,大规模重编程宿主基因表达以抵抗疾病。总之,我们的研究鉴定了一个 GBPL 回路,它增强了相分离凝聚物的生物学重要性,在这种情况下,作为植物防御中不可或缺的参与者。

相似文献

1
A phase-separated nuclear GBPL circuit controls immunity in plants.液-液相分离的核 GBPL 回路控制植物的免疫。
Nature. 2021 Jun;594(7863):424-429. doi: 10.1038/s41586-021-03572-6. Epub 2021 May 26.
2
Increasing the resilience of plant immunity to a warming climate.提高植物免疫力以应对气候变暖。
Nature. 2022 Jul;607(7918):339-344. doi: 10.1038/s41586-022-04902-y. Epub 2022 Jun 29.
4
Nucleated transcriptional condensates amplify gene expression.核转录凝聚物可扩增基因表达。
Nat Cell Biol. 2020 Oct;22(10):1187-1196. doi: 10.1038/s41556-020-00578-6. Epub 2020 Sep 14.
9
[Latest Findings on Phase Separation of Cytomechanical Proteins].[细胞力学蛋白相分离的最新发现]
Sichuan Da Xue Xue Bao Yi Xue Ban. 2024 Jan 20;55(1):19-23. doi: 10.12182/20240160206.

引用本文的文献

1
Biomolecular condensates in plant immunity.植物免疫中的生物分子凝聚物
Cell Host Microbe. 2025 Aug 13;33(8):1276-1290. doi: 10.1016/j.chom.2025.06.014.

本文引用的文献

3
Genetic strategies for improving crop yields.遗传策略提高作物产量。
Nature. 2019 Nov;575(7781):109-118. doi: 10.1038/s41586-019-1679-0. Epub 2019 Nov 6.
4
Organization of Chromatin by Intrinsic and Regulated Phase Separation.染色质的固有和调控相分离组织。
Cell. 2019 Oct 3;179(2):470-484.e21. doi: 10.1016/j.cell.2019.08.037. Epub 2019 Sep 19.
6
Cell-autonomous immunity by IFN-induced GBPs in animals and plants.动植物中 IFN 诱导的 GBP 的细胞自主免疫。
Curr Opin Immunol. 2019 Oct;60:71-80. doi: 10.1016/j.coi.2019.04.017. Epub 2019 Jun 6.
9
Symmetrical organization of proteins under docked synaptic vesicles.突触囊泡对接下的蛋白质对称组织。
FEBS Lett. 2019 Jan;593(2):144-153. doi: 10.1002/1873-3468.13316. Epub 2019 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验