Suppr超能文献

竞争的蛋白质-RNA 相互作用网络控制多相细胞内组织。

Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization.

机构信息

Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.

Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.

出版信息

Cell. 2020 Apr 16;181(2):306-324.e28. doi: 10.1016/j.cell.2020.03.050.

Abstract

Liquid-liquid phase separation (LLPS) mediates formation of membraneless condensates such as those associated with RNA processing, but the rules that dictate their assembly, substructure, and coexistence with other liquid-like compartments remain elusive. Here, we address the biophysical mechanism of this multiphase organization using quantitative reconstitution of cytoplasmic stress granules (SGs) with attached P-bodies in human cells. Protein-interaction networks can be viewed as interconnected complexes (nodes) of RNA-binding domains (RBDs), whose integrated RNA-binding capacity determines whether LLPS occurs upon RNA influx. Surprisingly, both RBD-RNA specificity and disordered segments of key proteins are non-essential, but modulate multiphase condensation. Instead, stoichiometry-dependent competition between protein networks for connecting nodes determines SG and P-body composition and miscibility, while competitive binding of unconnected proteins disengages networks and prevents LLPS. Inspired by patchy colloid theory, we propose a general framework by which competing networks give rise to compositionally specific and tunable condensates, while relative linkage between nodes underlies multiphase organization.

摘要

液-液相分离(LLPS)介导无膜液滴的形成,如与 RNA 处理相关的液滴,但决定其组装、亚结构以及与其他类似液体隔室共存的规则仍然难以捉摸。在这里,我们使用人细胞中带有 P 体的细胞质应激颗粒(SGs)的定量重构来解决这种多相组织的生物物理机制。蛋白质相互作用网络可以看作是 RNA 结合域(RBD)相互连接的复合物(节点),其整合的 RNA 结合能力决定了在 RNA 流入时是否会发生 LLPS。令人惊讶的是,RBD-RNA 特异性和关键蛋白的无规则片段都不是必需的,但可以调节多相凝聚。相反,连接节点的蛋白质网络之间的化学计量依赖性竞争决定了 SG 和 P 体的组成和混溶性,而未连接的蛋白质的竞争结合会使网络脱离并阻止 LLPS。受斑杂胶体理论的启发,我们提出了一个通用框架,通过该框架,竞争网络产生具有特定组成的可调谐液滴,而节点之间的相对连接则是多相组织的基础。

相似文献

1
Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization.
Cell. 2020 Apr 16;181(2):306-324.e28. doi: 10.1016/j.cell.2020.03.050.
4
Nonspecific interactions can lead to liquid-liquid phase separation in coiled-coil proteins models.
bioRxiv. 2025 May 15:2025.05.09.653163. doi: 10.1101/2025.05.09.653163.
5
TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau.
Proc Natl Acad Sci U S A. 2021 Mar 2;118(9). doi: 10.1073/pnas.2014188118.
6
Hydration free energy is a significant predictor of globular protein incorporation into condensates.
bioRxiv. 2025 Jul 7:2025.07.03.663089. doi: 10.1101/2025.07.03.663089.
7
Molecular mechanisms of stress granule assembly and disassembly.
Biochim Biophys Acta Mol Cell Res. 2021 Jan;1868(1):118876. doi: 10.1016/j.bbamcr.2020.118876. Epub 2020 Sep 29.
8
Mammalian stress granules and P bodies at a glance.
J Cell Sci. 2020 Sep 1;133(16):jcs242487. doi: 10.1242/jcs.242487.

引用本文的文献

2
Current practices in the study of biomolecular condensates: a community comment.
Nat Commun. 2025 Aug 19;16(1):7730. doi: 10.1038/s41467-025-62055-8.
4
UBAP2L-driven stress granule formation links oxaliplatin resistance to gastric cancer.
Commun Biol. 2025 Aug 13;8(1):1208. doi: 10.1038/s42003-025-08584-w.
6
Multi-Faceted Roles of Stress Granules in Viral Infection.
Microorganisms. 2025 Jun 20;13(7):1434. doi: 10.3390/microorganisms13071434.
7
Interfacial effects determine nonequilibrium phase behaviors in chemically driven fluids.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2501145122. doi: 10.1073/pnas.2501145122. Epub 2025 Jul 23.
9
Xist condensates: perspectives for therapeutic intervention.
Genome Biol. 2025 Jul 21;26(1):215. doi: 10.1186/s13059-025-03666-8.

本文引用的文献

1
G3BP1 Is a Tunable Switch that Triggers Phase Separation to Assemble Stress Granules.
Cell. 2020 Apr 16;181(2):325-345.e28. doi: 10.1016/j.cell.2020.03.046.
2
UBAP2L Forms Distinct Cores that Act in Nucleating Stress Granules Upstream of G3BP1.
Curr Biol. 2020 Feb 24;30(4):698-707.e6. doi: 10.1016/j.cub.2019.12.020. Epub 2020 Jan 16.
3
Modulation of RNA Condensation by the DEAD-Box Protein eIF4A.
Cell. 2020 Feb 6;180(3):411-426.e16. doi: 10.1016/j.cell.2019.12.031. Epub 2020 Jan 9.
4
GC content shapes mRNA storage and decay in human cells.
Elife. 2019 Dec 19;8:e49708. doi: 10.7554/eLife.49708.
5
LASSI: A lattice model for simulating phase transitions of multivalent proteins.
PLoS Comput Biol. 2019 Oct 21;15(10):e1007028. doi: 10.1371/journal.pcbi.1007028. eCollection 2019 Oct.
6
Properties of Stress Granule and P-Body Proteomes.
Mol Cell. 2019 Oct 17;76(2):286-294. doi: 10.1016/j.molcel.2019.09.014.
8
Small-Molecule Modulation of TDP-43 Recruitment to Stress Granules Prevents Persistent TDP-43 Accumulation in ALS/FTD.
Neuron. 2019 Sep 4;103(5):802-819.e11. doi: 10.1016/j.neuron.2019.05.048. Epub 2019 Jul 1.
9
Phosphorylation of G3BP1-S149 does not influence stress granule assembly.
J Cell Biol. 2019 Jul 1;218(7):2425-2432. doi: 10.1083/jcb.201801214. Epub 2019 Jun 6.
10
UBAP2L arginine methylation by PRMT1 modulates stress granule assembly.
Cell Death Differ. 2020 Jan;27(1):227-241. doi: 10.1038/s41418-019-0350-5. Epub 2019 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验