Miu Evan V, Mpourmpakis Giannis, McKone James R
Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
ACS Appl Mater Interfaces. 2020 Oct 7;12(40):44658-44670. doi: 10.1021/acsami.0c11300. Epub 2020 Sep 27.
The ability to predict intercalation energetics from first principles is attractive for identifying candidate materials for energy storage, chemical sensing, and catalysis. In this work, we introduce a computational framework that can be used to predict the thermodynamics of hydrogen intercalation in tungsten trioxide (WO). Specifically, using density functional theory (DFT), we investigated intercalation energetics as a function of adsorption site and hydrogen stoichiometry. Site-specific acid-base properties determined using DFT were used to develop linear structure screening models that informed a kernel ridge energy prediction model. These regressions provided a series of hydrogen binding energy predictions across stoichiometries ranging from WO to HWO, which were then converted to equilibrium potentials for hydrogen intercalation. Experimental validation using cyclic voltammetry measurements yielded good agreement with the predicted intercalation potentials. This methodology enables fast exploration of a large geometric configuration space and reveals an intuitive physical relationship between acidity, basicity, and the thermodynamics of hydrogen intercalation. Furthermore, the combination of theoretical and experimental results suggests HWO as a maximum stable stoichiometry for the bronzes that arises from competition with hydrogen evolution rather than the inability of WO to accommodate additional hydrogen. Our experimental results further indicate hydrogen insertion in WO is highly irreversible for low H-stoichiometries, which we propose to be a consequence of the semiconductor-to-metal transition that occurs upon initial H-intercalation. Overall, the agreement between theory and experiment suggests that local acid-base characteristics govern hydrogen intercalation in tungsten trioxide, and this insight can aid the accelerated discovery of redox-active metal oxides for catalytic hydrogenations.
从第一性原理预测嵌入能的能力对于识别用于能量存储、化学传感和催化的候选材料具有吸引力。在这项工作中,我们引入了一个计算框架,可用于预测三氧化钨(WO)中氢嵌入的热力学。具体而言,我们使用密度泛函理论(DFT)研究了嵌入能与吸附位点和氢化学计量的函数关系。利用DFT确定的位点特异性酸碱性质被用于开发线性结构筛选模型,该模型为核岭能量预测模型提供了信息。这些回归提供了一系列从WO到HWO化学计量范围内的氢结合能预测,然后将其转换为氢嵌入的平衡电位。使用循环伏安法测量进行的实验验证与预测的嵌入电位取得了良好的一致性。这种方法能够快速探索大的几何构型空间,并揭示酸度、碱度与氢嵌入热力学之间直观的物理关系。此外,理论和实验结果的结合表明,HWO是青铜中最大稳定化学计量,这是由于与析氢的竞争而非WO无法容纳更多氢所致。我们的实验结果进一步表明,对于低H化学计量,WO中的氢插入是高度不可逆的,我们认为这是初始H嵌入时发生的半导体到金属转变的结果。总体而言,理论与实验之间的一致性表明,局部酸碱特性控制着三氧化钨中的氢嵌入,这一见解有助于加速发现用于催化氢化的氧化还原活性金属氧化物。