Altınçekiç Nazmiye Gökçe, Lander Chance W, Roslend Ayman, Yu Jiaqi, Shao Yihan, Noh Hyunho
Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019, United States.
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
J Am Chem Soc. 2024 Dec 11;146(49):33485-33498. doi: 10.1021/jacs.4c10421. Epub 2024 Oct 31.
Titanium dioxide (TiO) has long been employed as a (photo)electrode for reactions relevant to energy storage and renewable energy synthesis. Proton-coupled electron transfer (PCET) reactions with equimolar amounts of protons and electrons at the TiO surface or within the bulk structure lie at the center of these reactions. Because a proton and an electron are thermochemically equivalent to an H atom, these reactions are essentially H atom transfer reactions. Thermodynamics of H atom transfer has a complex dependence on the synthetic protocol and chemical history of the electrode, the reaction medium, and many others; together, these complications preclude the understanding of the H atom transfer thermochemistry with atomic-level structural knowledge. Herein, we report our success in employing open-circuit potential () measurements to determine the H atom transfer thermochemistry at structurally well-defined Ti-oxo clusters within a colloidally stabilized metal-organic framework (MOF), Ti-MIL-125. The free energy to transfer H atom, TiO-H bond dissociation free energy (BDFE), was measured to be 68(2) kcal mol. To the best of our understanding, this is the first report on using measurements to quantify thermochemistry on any MOFs. The proton topology, the structural change upon the redox reaction, and BDFE values were further corroborated using computational simulations. Furthermore, comparisons of the -derived BDFEs of Ti-MIL-125 to similar parameters in the literature suggest that should be the preferred method for quantitatively BDFE calculations. The reported success in employing for nanosized Ti-MIL-125 should lay the ground for thermochemical measurements of other colloidal systems, which are otherwise challenging. Implications of these measurements on Ti-MIL-125 as an H atom acceptor in chemical reactions and comparisons with other MOFs/metal oxides are discussed.
长期以来,二氧化钛(TiO₂)一直被用作与能量存储和可再生能源合成相关反应的(光)电极。在TiO₂表面或本体结构内,质子与电子等摩尔的质子耦合电子转移(PCET)反应是这些反应的核心。由于一个质子和一个电子在热化学上等同于一个氢原子,这些反应本质上是氢原子转移反应。氢原子转移的热力学对电极的合成方案和化学历史、反应介质等有复杂的依赖性;这些复杂因素共同阻碍了我们利用原子级结构知识来理解氢原子转移热化学。在此,我们报告了成功利用开路电势(OCP)测量来确定胶体稳定的金属有机框架(MOF)Ti-MIL-125中结构明确的钛氧簇上的氢原子转移热化学。测量得到的氢原子转移自由能,即TiO-H键解离自由能(BDFE)为68(2) kcal/mol。据我们所知,这是首次关于使用OCP测量来量化任何MOF热化学的报告。通过计算模拟进一步证实了质子拓扑结构、氧化还原反应后的结构变化以及BDFE值。此外,将Ti-MIL-125由OCP得出的BDFE与文献中类似参数进行比较表明,OCP应该是定量计算BDFE的首选方法。报道的在纳米尺寸的Ti-MIL-125上使用OCP的成功应该为其他胶体系统的热化学测量奠定基础,否则这些测量具有挑战性。讨论了这些测量对于Ti-MIL-125作为化学反应中氢原子受体的意义以及与其他MOF/金属氧化物的比较。