Suppr超能文献

人工智能微藻:遗传学、系统和产品的数字化视角。

Microalgae with artificial intelligence: A digitalized perspective on genetics, systems and products.

机构信息

Brno University of Technology, Institute of Process Engineering, Technická 2896/2, 616 69, Brno, Czech Republic.

Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.

出版信息

Biotechnol Adv. 2020 Nov 15;44:107631. doi: 10.1016/j.biotechadv.2020.107631. Epub 2020 Sep 12.

Abstract

With recent advances in novel gene-editing tools such as RNAi, ZFNs, TALENs, and CRISPR-Cas9, the possibility of altering microalgae toward designed properties for various application is becoming a reality. Alteration of microalgae genomes can modify metabolic pathways to give elevated yields in lipids, biomass, and other components. The potential of such genetically optimized microalgae can give a "domino effect" in further providing optimization leverages down the supply chain, in aspects such as cultivation, processing, system design, process integration, and revolutionary products. However, the current level of understanding the functional information of various microalgae gene sequences is still primitive and insufficient as microalgae genome sequences are long and complex. From this perspective, this work proposes to link up this knowledge gap between microalgae genetic information and optimized bioproducts using Artificial Intelligence (AI). With the recent acceleration of AI research, large and complex data from microalgae research can be properly analyzed by combining the cutting-edge of both fields. In this work, the most suitable class of AI algorithms (such as active learning, semi-supervised learning, and meta-learning) are discussed for different cases of microalgae applications. This work concisely reviews the current state of the research milestones and highlight some of the state-of-art that has been carried out, providing insightful future pathways. The utilization of AI algorithms in microalgae cultivation, system optimization, and other aspects of the supply chain is also discussed. This work opens the pathway to a digitalized future for microalgae research and applications.

摘要

随着 RNAi、ZFNs、TALENs 和 CRISPR-Cas9 等新型基因编辑工具的最新进展,改变微藻以获得各种应用所需的设计特性的可能性正在成为现实。改变微藻基因组可以修饰代谢途径,提高脂质、生物量和其他成分的产量。这种经过基因优化的微藻的潜力可以在供应链的各个方面产生“多米诺骨牌效应”,例如在培养、加工、系统设计、过程集成和革命性产品方面提供优化杠杆。然而,目前对各种微藻基因序列功能信息的理解仍然很原始和不足,因为微藻基因组序列又长又复杂。从这个角度来看,这项工作提出使用人工智能 (AI) 来弥合微藻遗传信息和优化生物制品之间的知识差距。随着人工智能研究的最近加速,通过结合这两个领域的最前沿技术,可以对来自微藻研究的大量复杂数据进行适当分析。在这项工作中,讨论了最适合的 AI 算法类别(例如主动学习、半监督学习和元学习),以用于不同的微藻应用案例。这项工作简要回顾了当前的研究里程碑,并强调了已经开展的一些最先进的研究,提供了有见地的未来途径。还讨论了 AI 算法在微藻培养、系统优化和供应链其他方面的利用。这项工作为微藻研究和应用的数字化未来开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验