University of Iowa Hospital and Clinics, Department of Radiology, USA.
University of Iowa Hospital and Clinics, Department of Pathology, USA.
Clin Neurol Neurosurg. 2020 Nov;198:106205. doi: 10.1016/j.clineuro.2020.106205. Epub 2020 Sep 6.
Invasion of brain parenchyma by meningioma can be a critical factor in surgical planning. The aim of this study was to determine the diagnostic utility of first-order texture parameters derived from both whole tumor and single largest slice of T1-contrast enhanced (T1-CE) images in differentiating meningiomas with and without brain invasion based on histopathology demonstration.
T1-CE images of a total of 56 cases of grade II meningiomas with brain invasion (BI) and 52 meningiomas (37 grade I and 15 grade II) with no brain invasion (NBI) were analyzed. Filtration-based first-order histogram derived texture parameters were calculated both for whole tumor volume and largest axial cross-section. Random forest models were constructed both for whole tumor volume and largest axial cross-section individually and were assessed using a 5-fold cross validation with 100 repeats.
In detection of brain invasion, random forest model based on whole tumor segmentation had an AUC of 0.988 (95 % CI 0.976-1.00) with a cross validated value of 0.74 (95 % CI 0.45-0.96). For differentiation of grade I meningiomas from grade II meningiomas with brain invasion, the AUC was 0.999 (95 % CI 0.995-1.00) and 0.81 (95 % CI 0.61-0.99) in the training and validation cohorts, respectively. Similarly, when using only the single largest slice, the cross-validated AUC to distinguish BI versus NBI and BI versus grade I meningiomas was 0.67 (95 % CI 0.47, 0.92 and 0.78 (95 % CI 0.52, 0.95) respectively.
Radiomics based feature analysis applied on routine MRI post-contrast images may be helpful to predict presence of brain invasion in meningioma, possibly with better performance when comparing BI versus grade I meningiomas.
脑膜瘤侵犯脑实质是手术规划的一个关键因素。本研究旨在确定基于组织病理学结果,通过对 T1 对比增强(T1-CE)图像的全肿瘤和最大单层面提取的一阶纹理参数,在区分有和无脑膜瘤侵犯(BI)的 II 级脑膜瘤中的诊断效能。
分析了 56 例有 BI 的 II 级脑膜瘤和 52 例无脑膜瘤侵犯(NBI)的脑膜瘤(37 例 I 级和 15 例 II 级)的 T1-CE 图像。计算了全肿瘤体积和最大轴向切片的基于滤波的一阶直方图纹理参数。分别为全肿瘤体积和最大轴向切片构建随机森林模型,并进行 5 折交叉验证,重复 100 次。
在检测脑膜瘤侵犯方面,基于全肿瘤分割的随机森林模型 AUC 为 0.988(95 % CI 0.976-1.00),交叉验证值为 0.74(95 % CI 0.45-0.96)。对于区分 I 级脑膜瘤和有 BI 的 II 级脑膜瘤,训练集和验证集的 AUC 分别为 0.999(95 % CI 0.995-1.00)和 0.81(95 % CI 0.61-0.99)。同样,仅使用最大单层面时,区分 BI 与 NBI 和 BI 与 I 级脑膜瘤的交叉验证 AUC 分别为 0.67(95 % CI 0.47, 0.92)和 0.78(95 % CI 0.52, 0.95)。
基于放射组学的特征分析应用于常规 MRI 增强后图像可能有助于预测脑膜瘤的 BI 存在,在比较 BI 与 I 级脑膜瘤时可能具有更好的性能。