Department of Neurology, Innsbruck Medical University, Innsbruck, Austria.
Department of Geodesy and Geoinformation, Technical University Vienna, Vienna, Austria.
J Neurooncol. 2023 Sep;164(3):711-720. doi: 10.1007/s11060-023-04414-3. Epub 2023 Sep 14.
This retrospective study aimed to analyse the correlation between somatostatin receptor subtypes (SSTR 1-5) and maximum standardized uptake value (SUV) in meningioma patients using Gallium-68 DOTA-D-Phe1-Tyr3-octreotide Positron Emission Tomography ([68Ga]Ga-DOTATOC PET). Secondly, we developed a radiomic model based on apparent diffusion coefficient (ADC) maps derived from diffusion weighted magnetic resonance images (DWI MRI) to reproduce SUV.
The study included 51 patients who underwent MRI and [68Ga]Ga-DOTATOC PET before meningioma surgery. SUV values were quantified from PET images and tumour areas were segmented on post-contrast T1-weighted MRI and mapped to ADC maps. A total of 1940 radiomic features were extracted from the tumour area on each ADC map. A random forest regression model was trained to predict SUV and the model's performance was evaluated using repeated nested cross-validation. The expression of SSTR subtypes was quantified in 18 surgical specimens and compared to SUV values.
The random forest regression model successfully predicted SUV values with a significant correlation observed in all 100 repeats (p < 0.05). The mean Pearson's r was 0.42 ± 0.07 SD, and the root mean square error (RMSE) was 28.46 ± 0.16. SSTR subtypes 2A, 2B, and 5 showed significant correlations with SUV values (p < 0.001, R2 = 0.669; p = 0.001, R2 = 0.393; and p = 0.012, R2 = 0.235, respectively).
SSTR subtypes 2A, 2B, and 5 correlated significantly with SUV in meningioma patients. The developed radiomic model based on ADC maps effectively reproduces SUV using [68Ga]Ga-DOTATOC PET.
本回顾性研究旨在分析应用镓-68 双[DOTA]-D-Phe1-Tyr3-奥曲肽正电子发射断层扫描([68Ga]Ga-DOTATOC PET)分析脑膜瘤患者生长抑素受体亚型(SSTR1-5)与最大标准化摄取值(SUV)之间的相关性。其次,我们基于磁共振弥散加权成像(DWI MRI)得到的表观弥散系数(ADC)图开发了一个放射组学模型,以重现 SUV。
本研究纳入了 51 例在脑膜瘤手术前接受 MRI 和[68Ga]Ga-DOTATOC PET 的患者。通过 PET 图像定量 SUV 值,并在对比后 T1 加权 MRI 上勾画肿瘤区域,然后映射到 ADC 图。从每个 ADC 图的肿瘤区域中提取了 1940 个放射组学特征。使用随机森林回归模型来预测 SUV 值,并通过重复嵌套交叉验证来评估模型的性能。在 18 个手术标本中定量了 SSTR 亚型的表达,并与 SUV 值进行了比较。
随机森林回归模型成功地预测了 SUV 值,在所有 100 次重复中均观察到显著相关性(p<0.05)。平均 Pearson r 为 0.42±0.07 SD,均方根误差(RMSE)为 28.46±0.16。SSTR 亚型 2A、2B 和 5 与 SUV 值呈显著相关(p<0.001,R2=0.669;p=0.001,R2=0.393;p=0.012,R2=0.235)。
脑膜瘤患者的 SSTR 亚型 2A、2B 和 5 与 SUV 值显著相关。基于 ADC 图开发的放射组学模型可有效利用[68Ga]Ga-DOTATOC PET 重现 SUV 值。