文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Tailoring Iron Oxide Nanoparticles for Efficient Cellular Internalization and Endosomal Escape.

作者信息

Rueda-Gensini Laura, Cifuentes Javier, Castellanos Maria Claudia, Puentes Paola Ruiz, Serna Julian A, Muñoz-Camargo Carolina, Cruz Juan C

机构信息

Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia.

School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia.

出版信息

Nanomaterials (Basel). 2020 Sep 11;10(9):1816. doi: 10.3390/nano10091816.


DOI:10.3390/nano10091816
PMID:32932957
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7559083/
Abstract

Iron oxide nanoparticles (IONs) have been widely explored for biomedical applications due to their high biocompatibility, surface-coating versatility, and superparamagnetic properties. Upon exposure to an external magnetic field, IONs can be precisely directed to a region of interest and serve as exceptional delivery vehicles and cellular markers. However, the design of nanocarriers that achieve an efficient endocytic uptake, escape lysosomal degradation, and perform precise intracellular functions is still a challenge for their application in translational medicine. This review highlights several aspects that mediate the activation of the endosomal pathways, as well as the different properties that govern endosomal escape and nuclear transfection of magnetic IONs. In particular, we review a variety of ION surface modification alternatives that have emerged for facilitating their endocytic uptake and their timely escape from endosomes, with special emphasis on how these can be manipulated for the rational design of cell-penetrating vehicles. Moreover, additional modifications for enhancing nuclear transfection are also included in the design of therapeutic vehicles that must overcome this barrier. Understanding these mechanisms opens new perspectives in the strategic development of vehicles for cell tracking, cell imaging and the targeted intracellular delivery of drugs and gene therapy sequences and vectors.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/9e5eae3f0a5c/nanomaterials-10-01816-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/e0708fb0969d/nanomaterials-10-01816-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/cd73e014920a/nanomaterials-10-01816-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/e6c615199ad6/nanomaterials-10-01816-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/69193d420a0c/nanomaterials-10-01816-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/fa336ed1dbe3/nanomaterials-10-01816-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/1eaab49d06f4/nanomaterials-10-01816-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/698407868e1a/nanomaterials-10-01816-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/f3700a9a2358/nanomaterials-10-01816-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/06d592173b4d/nanomaterials-10-01816-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/8406d9f61289/nanomaterials-10-01816-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/8d70b63df501/nanomaterials-10-01816-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/9e5eae3f0a5c/nanomaterials-10-01816-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/e0708fb0969d/nanomaterials-10-01816-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/cd73e014920a/nanomaterials-10-01816-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/e6c615199ad6/nanomaterials-10-01816-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/69193d420a0c/nanomaterials-10-01816-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/fa336ed1dbe3/nanomaterials-10-01816-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/1eaab49d06f4/nanomaterials-10-01816-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/698407868e1a/nanomaterials-10-01816-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/f3700a9a2358/nanomaterials-10-01816-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/06d592173b4d/nanomaterials-10-01816-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/8406d9f61289/nanomaterials-10-01816-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/8d70b63df501/nanomaterials-10-01816-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e348/7559083/9e5eae3f0a5c/nanomaterials-10-01816-g012.jpg

相似文献

[1]
Tailoring Iron Oxide Nanoparticles for Efficient Cellular Internalization and Endosomal Escape.

Nanomaterials (Basel). 2020-9-11

[2]
Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles.

Biochimie. 2019-2-21

[3]
Endosomal Escape of Bioactives Deployed via Nanocarriers: Insights Into the Design of Polymeric Micelles.

Pharm Res. 2022-6

[4]
Carriers Break Barriers in Drug Delivery: Endocytosis and Endosomal Escape of Gene Delivery Vectors.

Acc Chem Res. 2019-6-25

[5]
Advanced Strategies for Overcoming Endosomal/Lysosomal Barrier in Nanodrug Delivery.

Research (Wash D C). 2023-5-24

[6]
Assessing cellular internalization and endosomal escape abilities of novel BUFII-Graphene oxide nanobioconjugates.

Front Chem. 2022-9-15

[7]
pH-responsive cationic liposome for endosomal escape mediated drug delivery.

Colloids Surf B Biointerfaces. 2020-1-16

[8]
Quantifying the Endosomal Escape of pH-Responsive Nanoparticles Using the Split Luciferase Endosomal Escape Quantification Assay.

ACS Appl Mater Interfaces. 2022-1-26

[9]
Tailoring Magnetite-Nanoparticle-Based Nanocarriers for Gene Delivery: Exploiting CRISPRa Potential in Reducing Conditions.

Nanomaterials (Basel). 2023-5-31

[10]
Cellular Uptake of Nanoparticles versus Small Molecules: A Matter of Size.

Acc Chem Res. 2018-8-29

引用本文的文献

[1]
Metal-based nanomedicines for cancer theranostics.

Mil Med Res. 2025-7-30

[2]
Receptor-Mediated SPION Labeling of CD4 T Cells for Longitudinal MRI Tracking of Distribution Following Systemic Injection in Mouse.

Nanomaterials (Basel). 2025-7-10

[3]
Lysosome-escaping and nucleus-targeting nanomedicine for enhanced cancer catalytic internal radiotherapy.

Eur J Nucl Med Mol Imaging. 2025-7-1

[4]
Natural sesquiterpene lactones in prostate cancer therapy: mechanisms and sources.

Med Oncol. 2025-5-15

[5]
Ferumoxytol promotes haematopoietic stem cell post-injury regeneration as a reactive oxygen species scavenger.

Nat Nanotechnol. 2025-4-23

[6]
Evaluating the impact of cell-penetrating motif position on the cellular uptake of magnetite nanoparticles.

Front Bioeng Biotechnol. 2024-12-2

[7]
Enhanced Delivery and Potency of Chemotherapeutics in Melanoma Treatment via Magnetite Nanobioconjugates.

ACS Omega. 2024-10-30

[8]
Intestinal nanoparticle delivery and cellular response: a review of the bidirectional nanoparticle-cell interplay in mucosa based on physiochemical properties.

J Nanobiotechnology. 2024-11-1

[9]
Polymeric nanocarrier-based adjuvants to enhance a locally produced mucosal coryza vaccine in chicken.

Sci Rep. 2024-7-3

[10]
Unveiling Nanoparticles: Recent Approaches in Studying the Internalization Pattern of Iron Oxide Nanoparticles in Mono- and Multicellular Biological Structures.

J Funct Biomater. 2024-6-19

本文引用的文献

[1]
Magnetite-OmpA Nanobioconjugates as Cell-Penetrating Vehicles with Endosomal Escape Abilities.

ACS Biomater Sci Eng. 2020-1-13

[2]
Engineering Nanoparticles for Optimized Photodynamic Therapy.

ACS Biomater Sci Eng. 2019-12-9

[3]
Magnetic Iron Oxide Nanoparticles for Disease Detection and Therapy.

Mater Today (Kidlington). 2019-12

[4]
PH-Responsive, Cell-Penetrating, Core/Shell Magnetite/Silver Nanoparticles for the Delivery of Plasmids: Preparation, Characterization, and Preliminary Evaluation.

Pharmaceutics. 2020-6-17

[5]
Multifunctional magnetite nanoparticles to enable delivery of siRNA for the potential treatment of Alzheimer's.

Drug Deliv. 2020-12

[6]
Modified green synthesis of FeO@SiO nanoparticles for pH responsive drug release.

Mater Sci Eng C Mater Biol Appl. 2020-7

[7]
Muscone/RI7217 co-modified upward messenger DTX liposomes enhanced permeability of blood-brain barrier and targeting glioma.

Theranostics. 2020

[8]
Differential internalization of brick shaped iron oxide nanoparticles by endothelial cells.

J Mater Chem B. 2016-9-21

[9]
Angiopep-pluronic F127-conjugated superparamagnetic iron oxide nanoparticles as nanotheranostic agents for BBB targeting.

J Mater Chem B. 2014-9-14

[10]
Poly-l-lysine assisted synthesis of core-shell nanoparticles and conjugation with triphenylphosphonium to target mitochondria.

J Mater Chem B. 2013-10-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索